一种基于量子社会情感优化的Massive MIMO上行系统功率分配方法

    公开(公告)号:CN108173580A

    公开(公告)日:2018-06-15

    申请号:CN201810086133.3

    申请日:2018-01-29

    CPC classification number: Y02D70/10 Y02D70/12 H04B7/0426 H04B7/0452

    Abstract: 本发明公开了一种基于量子社会情感优化的Massive MIMO上行系统功率分配方法,属于5G关键技术领域。本发明通过建立Massive MIMO系统功率分配模型,在初始化量子社会群体及系统参数中输出初始历史最优解,并通过实数化处理量子个体输出初始全局最优解,之后不断更新量子个体,当迭代次数大于预先设定的最大迭代次数时输出全局最优解,经实数化处理得到最佳功率分配方案。本发明充分考虑了在Massive MIMO上行系统中,用户的发送功率不得超过其最大发送功率的限制,同时满足用户最低传输速率和系统最低传输速率等要求,所设计的功率分配方法保证了服务质量,具有搜索速度快、全局搜索能力强的优点,更能满足实际工程的需要,为Massive MIMO上行系统的功率分配提供了一种新方法。

    基于量子猴群搜索机制的认知无线电功率控制方法

    公开(公告)号:CN107864507A

    公开(公告)日:2018-03-30

    申请号:CN201711173666.7

    申请日:2017-11-22

    Abstract: 本发明提供一种基于量子猴群搜索机制的认知无线电功率控制方法,建立非合作博弈的认知无线电功率控制模型,计算认知用户效用函数和,引入功率代价机制,选择需要优化的目标函数的形式;受猴群活动启发,设计量子猴群搜索机制,产生量子猴群中猴子的量子位置和数量,映射系统用户发射功率与猴群的量子位置一一对应,计算适应度值;经猴群活动中攀爬的过程更新每只猴子的最优量子位置;把猴子爬过程的最优量子位置映射为发射功率,通过猴群活动的望-跳与空翻的过程对猴子的最优位置进行更新;经数次迭代求得猴子的最优位置为最优解。本发明有更广泛的使用范围,能保证现有认知无线电系统中用户效用的提升,且用户功率的发射减少。

    认知中继网络的量子化学反应优化多中继选择方法

    公开(公告)号:CN107454604A

    公开(公告)日:2017-12-08

    申请号:CN201710724612.9

    申请日:2017-08-22

    CPC classification number: Y02D70/00 Y02D70/39 H04W16/14 H04W40/22

    Abstract: 本发明提供的是一种认知中继网络的量子化学反应优化多中继选择方法。1建立认知系统中继选择模型。2初始化量子分子集合及系统参数。3对集合中所有量子分子的势能进行评价,选择势能最小的量子分子的测量态作为全局最优解。4将量子分子的动能从高到低排序,分别进行分解反应、无效碰撞、合成反应。5对新产生的量子分子的势能进行评价。若新产生的量子分子的势能最小值小于上一代势能最小值,则记为新的全局最优解。6如果迭代次数小于预先设定的最大迭代次数,返回第4步;否则输出全局最优解。本发明均衡考虑认知中继网络在有主用户和无主用户约束条件下,基于量子化学反应机制,选择令系统吞吐量最大化的中继选择方案。

Patent Agency Ranking