-
公开(公告)号:CN110840445B
公开(公告)日:2021-07-20
申请号:CN201911279110.5
申请日:2019-12-12
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种动态心电信号的自动降噪方法,通过生成器输入有噪声的心电信号,通过不断的训练学习后产生干净的无噪声的心电信号,并自定义了损失函数,判别器对生成最后输出的干净信号和原始干净的心电信号进行判别,如果信号一致则输出为真,否则输出假。最后通过不断的学习实现动态心电信号降噪的目的。可以从混有噪声的动态心电信号当中过滤噪声,获得干净的原始心电信号。通过建立动态心电信号噪声模型,实现了如何有效地去除动态心电数据存在的各种复杂噪声,保留信号中的有效成分,提高心电信号的质量。
-
公开(公告)号:CN110321473B
公开(公告)日:2021-05-25
申请号:CN201910424586.7
申请日:2019-05-21
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开提供了一种基于多模态注意力的多样性偏好信息推送方法、系统、介质及设备,本公开对商品交易数据集进行预处理并对对应的用户评论信息和商品图片信息进行特征提取;通过融合用户的评论信息和商品的图片信息特征得到商品的多模态表示;将获得的商品的多模态表示、用户向量和商品向量输入到神经网络模型中,最后通过计算用户向量和商品向量之间的欧式距离来估计用户对商品的偏好程度,依据偏好程度的排序,进行信息的推送或显示;本公开利用多模态信息提升了模型的推荐效果,通过注意力机制解决了用户偏好的多样性问题。
-
公开(公告)号:CN111917490B
公开(公告)日:2021-05-18
申请号:CN202010707542.8
申请日:2020-07-21
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: H04B13/00
Abstract: 一种基于随机几何的无线体域网共存数值的计算方法,针对无线体域网共存的干扰问题,采用随机几何的方法,建立了无线体域网共存的网络泊松聚块模型,分析了无线体域网共存的性能,根据计算无线体域网在一定的分布密度共存时的发送成功概率和MAC层的CSMA协议竞争信道分析,得出了无线体域网共存的网络数值,可以有利于分析无线体域网络共存的性能,为设计无线体域网提供了理论依据和参考。
-
公开(公告)号:CN111176302B
公开(公告)日:2021-04-20
申请号:CN202010145290.4
申请日:2020-03-04
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G05D1/02
Abstract: 一种输入饱和的自动驾驶汽车路径跟踪控制方法,通过设计鲁棒H∞路径跟踪控制器,解决了自动驾驶汽车路径跟踪控制的网络时延和输入饱和问题,提高了车辆在极端行驶条件下的路径跟踪性能。通过对车辆侧向速度和横摆角速度的调节,在实现自动驾驶汽车路径跟踪控制的同时提高了车辆的操作稳定性。自动驾驶汽车鲁棒H∞路径跟踪控制增益矩阵可以通过求解线性矩阵不等式得到,计算简便。该路径跟踪控制设计综合考虑了车辆动力学模型的不确定性和外界扰动的影响,提高了路径跟踪控制算法的鲁棒性。通过设计静态输出反馈控制器,在实现理想的路径跟踪控制的同时,大大降低了控制系统的成本。
-
公开(公告)号:CN111027090B
公开(公告)日:2021-04-20
申请号:CN201811206205.X
申请日:2018-10-18
Applicant: 山东科技大学 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于异方差差分和K‑匿名机制的医疗数据隐私保护方法,通过引入差分隐私保护改善了K‑anonymity弱保护性的缺点,增强了数据的安全性;同时利用CART决策树计算出的各属性权重对不同属性进行异方差加噪,给予对最终分类结果影响力小的属性大噪音,给予对最终分类结果影响力大的属性小噪音,改变了传统统一加噪的方式,增强了数据的可用性;最后加入深度神经网络使得其数据可用性有了直观的展示。
-
公开(公告)号:CN110263684B
公开(公告)日:2021-02-09
申请号:CN201910489830.8
申请日:2019-06-06
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于轻量级神经网络的心电图分类方法,通过单导联心电图数据和轻量级神经网络模型实现心律失常自动分类的方法。首先,肢体II导联心电信号蕴含足够的信息;其次,使用卷积核大小为1的卷积层和全局平均池化层压缩特征维度;最后使用流线型的深度可分离卷积快速提取特征。利用单导联数据集和轻量级神经网络模型可以在保证模型准确率的基础上大幅度提高模型运算速度。
-
公开(公告)号:CN112287120A
公开(公告)日:2021-01-29
申请号:CN202011219474.7
申请日:2020-11-04
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于强化学习的双系统知识图谱的知识推理方法,通过融合高精度的分布式表示推理的单步推理算法和强化学习策略路径,搭建用于推理的推理系统和用于评价的评价系统。训练完备的评价系统帮助推理系统训练,使得推理系统可以学习评价系统中的网络信息。基于训练完备的评价系统对推理系统的推理路径评价,完成路径推理。
-
公开(公告)号:CN111460953A
公开(公告)日:2020-07-28
申请号:CN202010221886.8
申请日:2020-03-26
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
Abstract: 一种基于对抗域自适应学习的心电信号分类方法,使用多尺度特征提取模块提取的特征是高度域不变的,减少了域间差异,源域样本训练的模型也可以在目标域上更好的应用,网络训练结束后,保存最优模型,将新的心拍样本输入到保存的最优模型中,获得最终分类效果。使用多特征提取器可以增加特征的丰富性,更加全面的提取心电信号的细节信息,同时使用对抗域自适应学习的方法,可改善不同域样本分布不同的现象,获得高度概括源域样本和目标域样本之间的域不变特征,通过这些特征训练一个对目标域高度适用的分类模型,可提高数据分布不同的跨域心电信号的分类精度。
-
公开(公告)号:CN111436926A
公开(公告)日:2020-07-24
申请号:CN202010257349.9
申请日:2020-04-03
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: A61B5/0402 , A61B5/0472 , A61B5/00
Abstract: 一种基于统计特征和卷积循环神经网络的房颤信号检测方法,通过对两种不同类型不同维度的特征进行融合,得到特征集,使用粒子群优化算法训练支持向量机,并使用带权重的支持向量机对心电信号进行分类,将统计特征和卷积循环神经网络结合起来,有效解决了目前房颤信号检测存在的问题,更加全面的概括了房颤信号的特征,提高了房颤限号检测的精确度。
-
公开(公告)号:CN111419220A
公开(公告)日:2020-07-17
申请号:CN202010227774.3
申请日:2020-03-27
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心) , 山东大学齐鲁医院
Abstract: 一种基于共振稀疏分解的十二导联心电信号房颤检测方法,根据房颤信号的特点,利用共振稀疏分解对心电信号进行处理,将分解出的低共振分量部分送入神经网络中进行训练,逐个导联训练后通过投票算法(Voting)将各训练模型得出的概率进行联合运算,得到最终的检测结果,用于房颤检测时无需额外手工提取其他特征,网络结构简单,缩短了运算时间,可以实现实时房颤信号检测。针对房颤信号中“P波消失,出现F波”的表现特点,以共振稀疏分解为基础,突出房颤信号特点,通过简单的神经网络结构,保准准确率的基础上减少了运算时间。
-
-
-
-
-
-
-
-
-