-
公开(公告)号:CN110321473B
公开(公告)日:2021-05-25
申请号:CN201910424586.7
申请日:2019-05-21
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本公开提供了一种基于多模态注意力的多样性偏好信息推送方法、系统、介质及设备,本公开对商品交易数据集进行预处理并对对应的用户评论信息和商品图片信息进行特征提取;通过融合用户的评论信息和商品的图片信息特征得到商品的多模态表示;将获得的商品的多模态表示、用户向量和商品向量输入到神经网络模型中,最后通过计算用户向量和商品向量之间的欧式距离来估计用户对商品的偏好程度,依据偏好程度的排序,进行信息的推送或显示;本公开利用多模态信息提升了模型的推荐效果,通过注意力机制解决了用户偏好的多样性问题。
-
公开(公告)号:CN111737569B
公开(公告)日:2022-05-03
申请号:CN202010498841.5
申请日:2020-06-04
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06N3/04 , G06N3/08 , G06Q30/06
Abstract: 一种基于属性感知注意图卷积神经网络的个性化推荐方法,利用属性信息缓解了稀疏性问题;提出了基于用户‑商品‑属性交互图的图卷积神经网络推荐算法缓解了属性缺失问题;通过属性感知的注意力机制对用户偏好建模,提升了模型的推荐效果,并可以通过对用户的偏好建模进行推荐。
-
公开(公告)号:CN111737569A
公开(公告)日:2020-10-02
申请号:CN202010498841.5
申请日:2020-06-04
Applicant: 山东省人工智能研究院 , 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06N3/04 , G06N3/08 , G06Q30/06
Abstract: 一种基于属性感知注意图卷积神经网络的个性化推荐方法,利用属性信息缓解了稀疏性问题;提出了基于用户-商品-属性交互图的图卷积神经网络推荐算法缓解了属性缺失问题;通过属性感知的注意力机制对用户偏好建模,提升了模型的推荐效果,并可以通过对用户的偏好建模进行推荐。
-
公开(公告)号:CN110321473A
公开(公告)日:2019-10-11
申请号:CN201910424586.7
申请日:2019-05-21
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F16/9535 , G06F17/50 , G06K9/62 , G06Q30/02 , G06Q30/06
Abstract: 本公开提供了一种基于多模态注意力的多样性偏好信息推送方法、系统、介质及设备,本公开对商品交易数据集进行预处理并对对应的用户评论信息和商品图片信息进行特征提取;通过融合用户的评论信息和商品的图片信息特征得到商品的多模态表示;将获得的商品的多模态表示、用户向量和商品向量输入到神经网络模型中,最后通过计算用户向量和商品向量之间的欧式距离来估计用户对商品的偏好程度,依据偏好程度的排序,进行信息的推送或显示;本公开利用多模态信息提升了模型的推荐效果,通过注意力机制解决了用户偏好的多样性问题。
-
-
-