-
公开(公告)号:CN105375254B
公开(公告)日:2018-04-24
申请号:CN201510907163.2
申请日:2015-12-09
Applicant: 哈尔滨工业大学
Abstract: 高重频大能量可调谐激光循环系统的控制方法及该系统的流速验证方法,涉及一种激光循环系统。为了解决现有可调谐激光的循环系统的控制过程复杂的问题。所述控制方法为根据需求,确定循环染料池中的液体染料的高度h和黏滞系数η;设置液体染料的流动方向;根据雷诺参数Re=ηh/v,使雷诺参数Re<2000,获得液体染料控制流速v;控制系统采用基于负反馈原理利用实时采集的实际流速修正流速控制指令。所述流速验证方法包括:根据雷诺参数确定流速上限,根据传统办法确定流速下限,待验证的可调谐激光循环系统的流速在流速上限和流速下限范围内时,该流速才可行。本发明用于高重频大能量可调谐激光循环系统。
-
公开(公告)号:CN105098584B
公开(公告)日:2018-03-27
申请号:CN201510630955.X
申请日:2015-09-29
Applicant: 哈尔滨工业大学
IPC: H01S3/105
Abstract: 本发明公开了一种利用激光输出镜膜层控制技术实现多光束脉冲激光输出的装置及方法,所述装置包括谐振腔前腔镜、环形聚光腔、激光泵浦源、激光晶体棒、调Q晶体、可控镀膜激光输出镜,谐振腔前腔镜和可控镀膜激光输出镜构成激光振荡器的谐振腔,激光泵浦源发射出的激光经环形聚光腔汇聚到激光晶体棒中,激光晶体棒吸收泵浦能量,在谐振腔前腔镜和可控镀膜激光输出镜之间产生振荡激光,该激光经由调Q晶体后将被调制成脉冲形式,经过可控镀膜激光输出镜后输出多光束激光到谐振腔外。本发明利用可控镀膜技术实现谐振腔内多光束激光振荡最终产生多光束脉冲激光输出(N束),用于提高发动机点火成功几率以及可靠性。
-
公开(公告)号:CN106772314A
公开(公告)日:2017-05-31
申请号:CN201611131238.3
申请日:2016-12-09
Applicant: 哈尔滨工业大学
IPC: G01S7/481
CPC classification number: G01S7/4817
Abstract: 一种机载测绘激光雷达扫帚式扫描系统及其扫描方法,它涉及机载测绘激光雷达扫描系统及其扫描方法。解决现有推帚式扫描体制沿平台运动轨迹上被测区域的宽度将受到探测器视场角的限制的问题。扫描系统包括激光器、负柱面镜、两个正柱面镜、镀膜反射镜、反射镜安装架、光栅编码器、谐波减速器及伺服电机;方法:机载测绘激光雷达扫帚式扫描系统在机载平台直线运动的基础上,激光器射出的激光束依次经过负柱面镜、第一正柱面镜及第二正柱面镜形成扇形激光束,并射到镀膜反射镜上,经镀膜反射镜反射后在地面形成线型激光脚点,通过镀膜反射镜的往复转动来实现地面上的线型激光脚点沿Z轴方向发生平移,最终实现对地面被测区域的扫帚式扫描。
-
公开(公告)号:CN103872567B
公开(公告)日:2016-08-17
申请号:CN201410110905.4
申请日:2014-03-24
Applicant: 哈尔滨工业大学
Abstract: 腔外激光频率变换系统及变换方法,涉及快速获得高效率腔外激光频率变换系统及方法,属于激光与物质相互作用领域。解决了现有腔外激光频率变换方法中存在的倍频效率差,腔外激光频率变换系统的自动化程度低的问题,本发明所述非线性晶体放置在晶体架上,短脉冲激光器发射的激光经光阑调整传输方向后的光束入射至非线性晶体,经非线性晶体进行频率变换后的混合光入射至滤波片,经滤波片滤波后的目标光束发射至偏振片或衰减片,经偏振片或衰减片后射出的光束入射至光电探测器的感光面上,光电探测器的光强电信号输出端连接计算机的光强电信号输入端,计算机的串口通过数据线连接步进电机的位移信号输入端。本发明适用于进行腔外激光频率变换。
-
公开(公告)号:CN105548023A
公开(公告)日:2016-05-04
申请号:CN201510990762.5
申请日:2015-12-28
Applicant: 哈尔滨工业大学
IPC: G01N21/17
CPC classification number: G01N21/1702 , G01N2021/1704
Abstract: 本发明公开了一种基于光纤谐振腔的倏逝波型光声光谱微量气体传感器及测量方法,所述传感器由半导体激光源、光纤合束器、锥形光纤、石英音叉、相位调制器构成,其测量方法如下:步骤一、半导体激光源发射出的激光输入光纤合束器,经相位调制器后使得光纤合束器构成光学谐振腔,光纤内的激光功率得到放大增强,继而使得锥形光纤处产生较强的光学倏逝场;步骤二、待测目标气体吸收锥形光纤处的倏逝波场能量,产生声波场,石英音叉探测声波信号,反演气体浓度。本发明有效地提高了激光激发功率,进而极大地改进了光声光谱气体传感器的探测灵敏度。
-
公开(公告)号:CN105158162A
公开(公告)日:2015-12-16
申请号:CN201510226472.3
申请日:2015-05-06
Applicant: 哈尔滨工业大学
IPC: G01N21/17
Abstract: 一种基于光学互相关的时间选通装置及方法,涉及喷雾场雾化过程的测量装置及方法,是为了实现在喷雾场测量过程中的时间选通。超短激光脉冲首先经光学分束片分为两路,其中一路经过延迟线后聚焦至非线性光学晶体;另一路经斩波后先入射至喷雾场;调节入射至非线性光学晶体上该两路光的入射角,使二者在空间上满足相位匹配条件,当调节延迟线使得两路光脉冲同时到达非线性光学晶体时,由于非线性光学效应的存在,会在空间特定方向上出射二次谐波信号,该二次谐波信号反映了两路光的相关信息。通过滤波片滤除基频光后记录该二次谐波信号,即可反推出喷雾场出射的光子信息。本发明用于实现对喷雾场出射的弹道光子、蛇形光子及散射光子等的时间选通。
-
公开(公告)号:CN119511234A
公开(公告)日:2025-02-25
申请号:CN202411655432.6
申请日:2024-11-19
Applicant: 哈尔滨工业大学
Abstract: 一种适用于机载面阵盖革雪崩二极管雷达的高速去噪方法及装备,包括:雷达图像采集控制模块实现面阵盖革雪崩二极管雷达数据采集,对采集得到64*64图像进行有效像素与噪声像素的分割处理;通过分析雷达方程与设备参数增加自适应去噪;根据单帧内雪崩二极管数据分布自动设定信号阈值;通过使用匹配滤波提升信号占比;通过使用时间与空间相关方法提取信号并去除噪声。本发明通过结合面阵盖革雪崩二极管雷达的固有特性、单帧内数据分布、时间空间相关方法和匹配滤波算法对采集的雷达数据进行实时去噪处理,改善盖革雪崩二极管雷达在极低合成帧数下的数据淹没问题,可有效减少图像中的背景噪声干扰,快速获取像素信号质心。
-
公开(公告)号:CN115639571B
公开(公告)日:2024-08-16
申请号:CN202211366191.4
申请日:2022-10-31
Applicant: 哈尔滨工业大学
IPC: G01S17/89 , G01S17/894 , G01S17/933 , G01S7/497
Abstract: 本发明实施例提供一种条纹管成像激光雷达图像坐标校正方法、装置、介质及电子设备,所述方法包括:经激光脉冲矩阵控制单元输出的激光脉冲依次经过光学镜头、条纹管光阴极、条纹管聚极栅极阳极、条纹管偏转电场、像增强器和CCD探测器后成像,形成二维条纹图像,其中,所述条纹图像中包括激光光斑;通过对所述条纹图像进行滤波降噪及阈值分割的预处理后提取所述激光光斑质心坐标;基于所述激光光斑质心坐标得到输入激光脉冲矩阵以及激光光斑质心矩阵;根据所述输入激光脉冲矩阵及所述激光光斑质心矩阵运算得到条纹图像校正矩阵。
-
公开(公告)号:CN115639548B
公开(公告)日:2024-07-23
申请号:CN202211351761.2
申请日:2022-10-31
Applicant: 哈尔滨工业大学
IPC: G01S7/497
Abstract: 本发明实施例提供一种条纹管成像激光雷达图像坐标校正装置,所述装置包括:光源控制装置模块,所述光源控制装置模块配置为通过调节光源的空间角位置和触发时间,由单个激光脉冲经过控制后得到空间角‑延时二维激光脉冲矩阵;条纹管探测器模块,所述条纹管探测器模块配置为形成二维条纹图像;光斑质心坐标矩阵提取单元,所述光斑质心坐标矩阵提取单元配置为通过对所述条纹图像进行滤波降噪和阈值分割,得到各输入激光脉冲图像光斑区域,提取各条纹图像中光斑区域质心区域坐标,得到输入激光脉冲矩阵的光斑质心坐标矩阵,根据光斑质心坐标矩阵进行条纹图像校正。
-
公开(公告)号:CN118151175A
公开(公告)日:2024-06-07
申请号:CN202410280590.1
申请日:2024-03-12
Applicant: 哈尔滨工业大学
IPC: G01S17/894 , G01S7/481
Abstract: 本发明公开了一种单光子条纹阵列激光雷达,所述雷达包括激光发射单元、扫描单元、信号接收单元、控制单元和延时单元,激光发射单元发射一束扇形激光至扫描单元,经扫描单元偏转后射向目标;同时激光发射单元分出一部分激光被探测器接收并产生出射激光信号;反射回波经扫描单元后到达信号接收单元并最终产生单光子条纹图;控制单元控制延时单元、信号接收单元以及扫描单元的相关参数,接收出射激光信号、扫描单元角度值,监控并存取信号接收单元的条纹图;延时单元提供激光发射单元中Q开关和信号接收单元中相机门宽的延时,从而对工作时序进行控制。本发明能够达到单光子探测灵敏度,并通过数据处理实现对单个光子条纹图的亚像素定位。
-
-
-
-
-
-
-
-
-