-
公开(公告)号:CN114235344B
公开(公告)日:2023-09-22
申请号:CN202111532036.0
申请日:2021-12-14
申请人: 哈尔滨工业大学
IPC分类号: G01M11/00
摘要: 一种激光器谐振腔镜的调试装置及调试方法,属于激光器调试技术领域。一种激光器谐振腔镜的调试装置,包括He‑Ne激光器、负透镜、正透镜、反射镜Ⅰ、反射镜Ⅱ、反射镜Ⅲ、半透半反镜、CCD相机、电脑、谐振腔镜Ⅰ和谐振腔镜Ⅱ,He‑Ne激光器发射的激光依次穿过负透镜的中心、正透镜的中心,经反射镜Ⅰ反射至反射镜Ⅱ后,再反射至半透半反镜,穿过半透半反镜的光束入射至谐振腔镜Ⅰ或谐振腔镜Ⅱ,谐振腔镜Ⅰ或谐振腔镜Ⅱ将入射的光束反射至半透半反镜,经半透半反镜反射的光经反射镜Ⅲ反射至CCD相机,CCD相机与电脑电连接。本发明解决了传统激光器调试精度低的缺点,将传统激光器的调整精度提升了几个量级,提升了激光器的输出性能。
-
公开(公告)号:CN114235344A
公开(公告)日:2022-03-25
申请号:CN202111532036.0
申请日:2021-12-14
申请人: 哈尔滨工业大学
IPC分类号: G01M11/00
摘要: 一种激光器谐振腔镜的调试装置及调试方法,属于激光器调试技术领域。一种激光器谐振腔镜的调试装置,包括He‑Ne激光器、负透镜、正透镜、反射镜Ⅰ、反射镜Ⅱ、反射镜Ⅲ、半透半反镜、CCD相机、电脑、谐振腔镜Ⅰ和谐振腔镜Ⅱ,He‑Ne激光器发射的激光依次穿过负透镜的中心、正透镜的中心,经反射镜Ⅰ反射至反射镜Ⅱ后,再反射至半透半反镜,穿过半透半反镜的光束入射至谐振腔镜Ⅰ或谐振腔镜Ⅱ,谐振腔镜Ⅰ或谐振腔镜Ⅱ将入射的光束反射至半透半反镜,经半透半反镜反射的光经反射镜Ⅲ反射至CCD相机,CCD相机与电脑电连接。本发明解决了传统激光器调试精度低的缺点,将传统激光器的调整精度提升了几个量级,提升了激光器的输出性能。
-
公开(公告)号:CN111175023A
公开(公告)日:2020-05-19
申请号:CN201911344029.0
申请日:2019-12-24
申请人: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC分类号: G01M11/02
摘要: 本发明公开了一种用于LD端泵固体激光器中激光晶体热透镜焦距在线实时测量装置及方法,所述装置包括He-Ne激光器(1)、5-10倍第一扩束系统(2)、可变孔径光阑(3)、45°的632.8nm高反镜(4)、分束立方体(5)、45°的二色镜(6)、衰减片组(7)、2-5倍第二扩束系统(8)、相机(9)和导轨(10);利用所述高反镜(4)和分束立方体(5),调节He-Ne光与激光器泵浦光严格同光轴传输;通过所述第二扩束系统(8)使所述相机(9)上He-Ne成像光斑尽可能大,但不能超出所述相机(9)成像面元。该装置测量结果准确,能够快速地实现不同泵浦功率下激光晶体的热焦距测量,为激光器的补偿设计提供有力保障。
-
公开(公告)号:CN110957631A
公开(公告)日:2020-04-03
申请号:CN201911344608.5
申请日:2019-12-24
申请人: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC分类号: H01S3/131
摘要: 本发明公开了一种激光稳定性控制方法,所述方法由以下步骤实现:步骤一、第一形态脉冲串激光经过偏振分光棱镜入射到激光谐振腔中进行振荡传播,所述第一形态脉冲串激光经过光电调节器件、1/4波片和第一平面镜以及温度控制单元,激光光学偏振态变为第一形态脉冲串激光,经过所述光电调节器件的调节可以形成振荡光路;步骤二、当所述振荡激光振荡到一定阈值次数时,开启LD泵浦激光,使谐振腔内的晶体产生脉冲激光;步骤三、当脉冲串激光获得了足够大的增益,关闭光电调节器件,开启温度控制单元,使其保持在指定温度下,当激光在所述温度控制单元中反复震荡到一定次数时,形成稳定的激光输出。本发明的优点在于稳定激光输出。
-
公开(公告)号:CN104752948B
公开(公告)日:2018-03-20
申请号:CN201510181767.3
申请日:2015-04-17
申请人: 哈尔滨工业大学
IPC分类号: H01S3/10 , H01S3/16 , H01S3/0941
摘要: 本发明公开了一种利用456nm全固态激光泵浦Pr:YLF实现639nm激光输出的装置及方法,所述装置沿光束传播方向依次设置有光纤耦合输出的半导体激光器、第一非球面透镜、第二非球面透镜、第一平面镜、第一激光晶体、第一平凹镜、第二平凹镜、倍频晶体、第三平凹镜、第三非球面透镜、第二平面镜、第二激光晶体和第四平凹镜。本发明利用半导体端泵Nd:GdVO4晶体输出912nm激光,倍频后获得456nm激光作为泵浦源,用于泵浦Pr:YLG晶体并获得639nm橙光输出,解决了Pr:YLF激光器泵浦源相对匮乏的问题,为Pr:YLF激光器提供了一种新式的泵浦源,对于Pr:YLF激光器其他可见光波段激光的输出具有推动作用。
-
公开(公告)号:CN107271368A
公开(公告)日:2017-10-20
申请号:CN201710369282.6
申请日:2017-05-23
申请人: 哈尔滨工业大学
CPC分类号: G01N21/1702 , G01N21/01 , G01N2021/0106 , G01N2201/068
摘要: 本发明实施例涉及激光检测技术领域,尤其涉及一种内腔增强光声光谱式痕量气体传感器装置,所述装置包括沿光束传播方向依次设置的半导体激光器、斩波器、激光准直聚焦系统、前腔镜、可调谐滤波器、激光增益介质、石英音叉、后腔镜;所述石英音叉产生的压电信号经阻抗放大器放大后传输至控制与数据采集系统,所述控制与数据采集系统用于检测石英音叉的共振频率,并且实时控制所述斩波器,使之调制的频率f始终为石英音叉的共振频率f0;计算机连接所述控制与数据采集系统,通过上位机软件Labview进行实时控制。本装置能够快速检测出大气环境中存在多种痕量气体。
-
公开(公告)号:CN110954306B
公开(公告)日:2022-03-25
申请号:CN201911344580.5
申请日:2019-12-24
申请人: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC分类号: G01M11/02
摘要: 本发明公开了一种在线检测LD侧泵模块的装置与方法,所述检测装置可置于待测模块的一侧,沿LD侧泵模块通光方向分别设置有平面镜、可变焦镜组、工业相机和计算机。本发明利用上述的检测装置通过对待测LD侧泵模块中激光晶体内的辐射荧光成像来判断LD侧泵模块中LD巴条的运行情况,可实现任意LD侧泵模块的在线检测,尤其是对集成在激光器系统中的LD侧泵模块进行无拆除检测,从而不会破坏激光器系统的谐振腔。本发明具有检测快速,故障定位准确的优点,可大大提高LD侧泵模块的故障检测效率,节省激光器系统的维护时间,可应用于LD侧泵模块质量检测及激光器系统检测等领域。
-
公开(公告)号:CN112563871A
公开(公告)日:2021-03-26
申请号:CN202011440432.6
申请日:2020-12-07
申请人: 哈尔滨工业大学
摘要: 一种抗干扰且稳定性高的腔倒空激光器及其安装方法,属于激光器技术领域。通过连接棒固定的具有通孔的腔板设在L型板上,平凹镜、凸透镜、LD侧泵模块、偏振立方体、四分之一波片、普克尔盒及平面镜沿光路传播方向设置;平凹镜及平面镜安在通孔内,凸透镜、LD侧泵模块、偏振立方体、四分之一波片及普克尔盒设在L型板上;平凹镜的曲率半径、凸透镜的焦距以及平凹镜和凸透镜之间的距离相等。本发明提升了激光器对谐振腔失谐的不灵敏度,还可实现谐振腔的精密调节,保障了激光器的高稳定性,保证了激光器输出最佳化,提升了激光器的抗干扰能力。
-
公开(公告)号:CN110987379A
公开(公告)日:2020-04-10
申请号:CN201911344114.7
申请日:2019-12-24
申请人: 哈尔滨工业大学 , 深圳市航天泰瑞捷电子有限公司 , 深圳航天工业技术研究院有限公司
IPC分类号: G01M11/02
摘要: 本发明公开了一种利用刀口法测量激光器中激光晶体热焦距的方法和装置。该测量方法是:通过90/10刀口法测量输出激光的光束质量,可得到激光在腔外传输过程中每个位置的光斑大小和发散角;根据激光光束的传输变换原理,反推出第二反射镜6处的激光光斑和发散角大小;计算在谐振腔内插入焦距为f的热透镜时,第二反射镜6处的光斑大小,使腔内振荡激光在第二反射镜6处的光斑大小和发散角与反推的值相同;近似认为激光器的热透镜焦距为f。本发明的优点在于测量时不需要在激光光路上插入其他光学元件或者改变谐振腔结构,使测量时的激光器条件与激光运转时一致,测量结果准确,装置简单,测量精度高。
-
公开(公告)号:CN105548100B
公开(公告)日:2018-04-24
申请号:CN201510891175.0
申请日:2015-12-07
申请人: 哈尔滨工业大学
IPC分类号: G01N21/64
摘要: 用于PLIF流场诊断示踪剂的产生、注入的装置及方法,它涉及一种示踪剂产生、注入的装置及方法。在利用PLIF诊断技术对混合燃气进行高时间,高空间分辨率的定量测量的过程中,因无法精准确定混合蒸汽的温度,气压和浓度而影响实验的准确性。本发明中发生罐通过第一输气管道与混气罐相连通,发生罐上有第一热电偶,混气罐上有第二热电偶。本发明中步骤一:纯示踪剂蒸汽的形成;步骤二:调试混合气体浓度的过程;步骤三:根据理想气体状态方程PV=nRT,将混气罐内的稀释气体加压及稀释,得到符合实验要求的浓度为A,温度为T和气压为P的混合气体;步骤四:混合气体的注入过程。本发明用于示踪剂的产生兼备注入实验场的过程中。
-
-
-
-
-
-
-
-
-