-
-
公开(公告)号:CN106784309A
公开(公告)日:2017-05-31
申请号:CN201611151682.1
申请日:2016-12-14
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
CPC classification number: H01L45/143 , H01L45/04 , H01L45/165
Abstract: 本发明提供一种OTS材料、选通管单元及其制作方法,所述OTS材料为包括Ge、Se及As三种元素的化合物,所述OTS材料的化学通式为GexSeyAs100‑x‑y,其中,x、y为元素的原子百分比,且10
-
-
公开(公告)号:CN102610745B
公开(公告)日:2015-05-13
申请号:CN201110021620.X
申请日:2011-01-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明提供一种用于相变存储器的Si-Sb-Te基硫族化合物相变材料,属微电子技术领域。该种材料具有高热稳定性和高结晶速度,其组分通式为(SiaSbbTec)1-yMy,其中元素M是氮元素或氧元素或它们的混合物;在SiaSbbTec中,Si的含量a为10-25%原子百分比,Sb和Te的含量的原子百分比的比值为1.7≤ (b/c) ≤2.0;掺杂元素M的含量y是0-25%原子百分比。该材料在电学脉冲的作用下,可在非晶态(高阻态)和晶态(低阻态)之间进行可逆转变,从而实现信息存储。该材料与传统的Ge2Sb2Te5相比,具有较高的结晶温度、较高的热稳定性和更高的晶态电阻率,使用该材料作为信息存储介质可以大大提高器件的数据保持能力,同时能保持较快的操作速度和降低的写操作功耗,提高器件的可靠性。
-
公开(公告)号:CN102978588B
公开(公告)日:2014-10-29
申请号:CN201210537558.4
申请日:2012-12-12
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种制备钛-锑-碲相变材料的方法及相变存储单元制备方法,包括:1)在基底上引入Sb的前驱体SbCl3脉冲,清洗未被吸收的的SbCl3,然后引入Te的前驱体(R3Si)2Te脉冲,清洗未被吸收的(R3Si)2Te和反应副产物;2)向上述基底引入Ti的前驱体TiCl4脉冲,清洗残余的TiCl4,然后引入Te的前驱体(R3Si)2Te脉冲,清洗残余(R3Si)2Te和反应副产物;3)向上述基底引入Sb的前驱体SbCl3脉冲,清洗残余的SbCl3,然后引入Sb的前驱体(R3Si)3Sb脉冲,清洗未被吸收的(R3Si)3Sb和反应副产物。采用本发明方法制备的钛-锑-碲相变材料具有厚度精确可控,薄膜致密性好,填孔能力强的特点。采用这种方法制备的相变薄膜应用到存储器中,可实现高密度存储,同时可以获得低功耗的器件。
-
公开(公告)号:CN102623632B
公开(公告)日:2014-10-15
申请号:CN201110031815.2
申请日:2011-01-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明揭示了一种用于高温环境的N-Ge-Te相变薄膜材料及其制备方法,该材料的组分通式为Nx(GeyTe1-y)1-x,其中0<x≤0.15,0.5<y≤0.9,在外部电脉冲的作用下实现可逆相变。该材料可采用磁控溅射中多靶共溅射的方法制备。本发明立足于相变材料非晶态的稳定性问题,通过调节化合物中掺杂N的含量和Ge、Te的比例,在不丢失可逆相变能力的前提下大幅度提高材料的结晶温度和结晶激活能。Nx(GeyTe1-y)1-x与传统的Ge2Sb2Te5材料相比有更高的结晶温度、更好的热稳定性和数据保持力,为相变存储器在航天航空领域的应用打好基础。
-
-
公开(公告)号:CN102569652B
公开(公告)日:2013-11-06
申请号:CN201210076528.8
申请日:2012-03-21
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L45/00
Abstract: 本发明涉及可用于相变存储器的Sb-Te-Ti相变薄膜材料及其制备和应用。本发明的Sb-Te-Ti新型相变存储材料,是在Sb-Te相变材料的基础上掺入Ti而成,掺入的Ti与Sb、Te均成键,其化学通式为SbxTeyTi100-x-y,其中0<x<80,0<y<100-x。当为Ti-Sb2Te相变存储材料时,Ti原子替代Sb原子的位置,且没有分相。现有的Sb-Te相变材料结晶过程以晶粒生长占主导,因此相变速率快,然而保持力不能满足工业要求。本发明的Sb-Te-Ti新型相变存储材料的结晶温度得到大幅度地升高,保持力提升,热稳定性增强;同时,非晶态电阻降低,晶态电阻升高;可广泛应用于相变存储器。
-
-
-
-
-
-
-
-