-
公开(公告)号:CN106950433B
公开(公告)日:2019-05-24
申请号:CN201710104222.1
申请日:2017-02-24
Applicant: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
IPC: G01R29/08
Abstract: 本发明公开了一种适应高真空度的低电磁散射背景环境实现方法,首先将低脱气量吸波材料制作成角锥形结构,然后加工制作圆柱形的不锈钢井字形背架,在井字形背架上挂装角锥形结构,在真空罐内部或真空罐热沉内部安装导轨,在不锈钢井字形背架底部安装滑轮,将角锥形结构与不锈钢井字形背架整体结构通过滑轮和导轨运输到真空罐中,形成适应高真空度的低电磁散射背景环境。本发明在真空罐现有基础上,增加低电磁散射测试功能,实现雷达隐身测试功能与真空红外测试功能的复合,为大气层外等离子体隐身测试提供试验环境条件。
-
公开(公告)号:CN106302716B
公开(公告)日:2019-05-24
申请号:CN201610665342.4
申请日:2016-08-12
Applicant: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
Abstract: 本发明涉及一种基于SOB技术的飞行器遥测组合及遥测系统,该遥测组合包括中心逻辑控制模块、数据采集模块、电源管理模块、存储模块和物理接口,其中中心逻辑控制模块从数据采集模块接收数字信号,同时通过物理接口接收外部的串行数据,对数字信号和串行数据进行第一次编帧处理,并将第一次编帧处理后的数据在存储模块中进行存储,第二次编帧处理开始后,从存储模块读取数据进行第二次编帧处理,并将编帧处理后的并行数据转换为PCM码流发送给外部的发射机;该遥测组合及遥测系统具在保证实时记录遥测数据的前提下,能够获得更高的遥测数据接收鲁棒性,增强了遥测下传的可靠性,提高了遥测数据发送的可控性,降低重要数据丢失的概率。
-
公开(公告)号:CN109656083A
公开(公告)日:2019-04-19
申请号:CN201811613787.3
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
CPC classification number: G03B21/16 , G03B21/208
Abstract: 本发明涉及一种采用复合制冷方式的太阳模拟器,包括复合式制冷系统和多路氙灯投影光学系统,每路氙灯投影光学系统均包括一个用于产生系统光束的氙灯组和一个对该路系统光束进行均匀化的光学积分器,各路系统光束叠加在被照面上形成均匀照射区域,模拟太阳辐照;复合式制冷系统包括循环风冷却子系统和循环水冷却子系统,采用风冷方式对氙灯组进行降温,水冷方式对其他部件进行降温,确保太阳模拟器可长时间稳定工作。
-
公开(公告)号:CN109580698A
公开(公告)日:2019-04-05
申请号:CN201811613788.8
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明涉及一种空间环境模拟装置中的目标热辐射分析方法,采用仿真方法首先建立一空间三维模拟场景,场景中包括热影响模型以及测试目标;然后根据确定的热影响模型,建立所述测试目标的热方程;然后输入工况参数,对所述热方程进行求解;最后根据求解的热方程,生成整体场景的温度场以及红外辐射场。本发明采用大型球形容器、热沉、太阳模拟器、背景辐射模拟器、测试轨道及测试设备、转台、观测窗口模拟场景,耦合三维非稳态情形进行辐射换热分析,可以实现波段3μm~50μm的辐射场的精确模拟。
-
公开(公告)号:CN109520640A
公开(公告)日:2019-03-26
申请号:CN201811613784.X
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明涉及一种真空低温环境下运动目标表面接触测温装置、系统和方法,其中装置包括:设置于真空罐体内部运动目标上的多个温度传感器;无线采集终端,设置于真空罐体内部运动模拟机构中,且所述无线采集终端与所述温度传感器连接,用于采集所述多个温度传感器的信号,通过模数转换生成温度数据,并通过无线方式发送;第一天线,安装于所述真空罐体内部运动模拟机构上,与所述无线采集终端连接,用于发送所述温度数据。本发明在空间环境模拟系统中采用无线发射与接收方式获得真空罐体内部运动目标的实时表面温度测量数据,与现有技术中采用回流环传输数据相比,保障了温度数据的稳定和准确传输。
-
公开(公告)号:CN109459215A
公开(公告)日:2019-03-12
申请号:CN201811615634.2
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
IPC: G01M11/02
CPC classification number: G01M11/0207
Abstract: 本发明公开一种用于空间目标远近场光学特性测量的装置,包括球形容器和通光光程筒,通过接筒连接,接筒上设有闸板阀;球形容器上有赤道测量面和第二测量面,第二测量面与接筒的中轴线在同一平面内,通光光程筒中轴线位于第二测量面下0.5m;光学测量设备自通光光程筒远端经过通光光程筒、接筒和球形容器向测量目标照射,测量目标位于所述第二测量面上;测量设备视场、测量目标尺寸、接筒长度和闸板阀尺寸相互约束。本发明通过设计球形主容器与圆柱形通光光程筒的结合,在不加大球形容器的同时,使得远光学场测量成为现实。同时通过合理设计测量位置、光程、各设备通光口径、长度等,使得测量视场全覆盖。
-
公开(公告)号:CN109436386A
公开(公告)日:2019-03-08
申请号:CN201811615662.4
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明涉及一种大直径真空容器试验测控系统,包括:监控系统、试验管理系统、数据库系统、网络系统、氮子系统、真空子系统和数采子系统,以及多个温度传感器、压力传感器、流量计、真空计和视频采集器;氮子系统接收温度数据、流量数据和压力数据,真空子系统接收真空度数据,数采子系统接收视频数据,各自根据照大直径真空容器不同部位进行分类标记处理;监控系统对视频数据进行分类和异常检测后生成对应的试验现场图像和图像异常分析信号;试验管理系统对各子系统数据进行动态预测处理,对比实际测量值与预测值的差异超过第一预设阈值时给出异常警告,并确定异常数据类型以及数据来源,同时结合图像异常分析信号生成试验管理与调度信号。
-
公开(公告)号:CN108649993A
公开(公告)日:2018-10-12
申请号:CN201810319210.5
申请日:2018-04-11
Applicant: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
Inventor: 邬润辉 , 刘佳琪 , 孟刚 , 刘举涛 , 高路 , 刘鑫 , 任爱民 , 白文浩 , 柴忪 , 江志烨 , 袁雷 , 周岩 , 王申兆 , 常青 , 李显旭 , 那成亮 , 童长海 , 孙长红
IPC: H04B1/707 , H04B10/079 , H04B10/11
CPC classification number: H04B1/707 , H04B10/0795 , H04B10/11
Abstract: 本发明提供了一种有无等离子体时通信信号传输延时测量系统,包括信号源、有线信道、无线信道、天线系统和信号接收处理系统;信号源产生扩频调制信号,并将该扩频调制信号调制到所需射频信号后,通过功分器分成两路射频信号,将第一路信号经过有线信道传输给信号接收处理系统,将第二路信号经过无线信道及天线系统,传输给信号接收处理系统;信号接收处理系统对接收的两路信号分别进行捕获和跟踪,提取两路信号的伪码相位并比较,得到第二路信号相对于第一路信号的延时。
-
公开(公告)号:CN107942330A
公开(公告)日:2018-04-20
申请号:CN201711155424.5
申请日:2017-11-20
Applicant: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
CPC classification number: G01S7/411 , G01S13/904 , G01S13/9064
Abstract: 一种基于等离子体近场测试的雷达散射特征数据提取方法及系统,通过在模拟真空环境的微波暗室中采用ISAR成像原理,利用一维扫描近场测试方法,对被测目标进行散射性能测试,获取被测目标的近场散射二维像,并利用近场校正技术修正球面波对RCS性能测试的影响误差,进而采用散射中心实现被测目标的远场RCS外推,获取被测目标的雷达散射截面远场数据。这种测试和数据提取方法能够针对生成等离子体云团的特殊环境,以及针对等离子体特有的扩散性和电离特性,给出等离子体包覆飞行器的整体目标雷达散射截面数据,测试角度覆盖了-30°到30°的宽角度范围,测试精度优于2dB,从而为等离子体隐身技术研究和隐身性能评估提供试验方法。
-
公开(公告)号:CN107450178A
公开(公告)日:2017-12-08
申请号:CN201710796233.0
申请日:2017-09-06
Applicant: 北京航天长征飞行器研究所 , 中国运载火箭技术研究院
Inventor: 李志峰 , 张力 , 李建华 , 牛振红 , 束逸 , 孟刚 , 水涌涛 , 刘佳琪 , 刘鑫 , 刘洪艳 , 高路 , 赵巨岩 , 杜润乐 , 薛莲 , 薛峰 , 赵茜 , 蔡雯琳 , 方艺忠 , 尹含 , 张鹏 , 汪大鹏
IPC: G02B26/08
Abstract: 本发明公开了一种二维MEMS微镜驱动控制系统和方法,其中,所述系统包括:数字控制器、第一DAC、微镜偏转驱动回路和MEMS微镜芯片;MEMS微镜芯片,包括:MEMS微镜;数字控制器,用于从接收到的外部指令中提取得到偏转角度指令,对偏转角度指令进行解码,得到MEMS微镜驱动数字波形;第一DAC,用于将MEMS微镜驱动数字波形转换为MEMS微镜驱动模拟波形;微镜偏转驱动回路,用于将MEMS微镜驱动模拟波形,转换为MEMS微镜驱动电流;MEMS微镜,用于在MEMS微镜驱动电流的驱动作用下进行偏转。通过本发明提高了磁驱动模式MEMS微镜的指向控制精度。
-
-
-
-
-
-
-
-
-