一种用于水冷线圈接口的接线方法及实现该方法的接线器

    公开(公告)号:CN114496494B

    公开(公告)日:2022-11-11

    申请号:CN202210118398.3

    申请日:2022-02-08

    Abstract: 一种用于水冷线圈接口的接线方法及实现该方法的接线器,涉及线圈散热及接线领域,为了解决使用带有水冷结构的金属导线绕制的线圈在与外部连接的接口处实现电流传输路径与冷却水传输路径完全分开的问题,其方法的步骤为:剥离一定长度的金属导线外部导体露出金属冷却水管、将导体与电缆转接器连接、电缆转接器与电缆连接引出线圈输入输出端、金属冷却水管外部套绝缘管引出与绝缘水管连接。接线器包括金属导线外部的导体、电缆转接器、电缆、绝缘骨架和安装底座。本发明适用于较高真空条件下的水冷线圈接口的接线。

    一种高真空环境下抑制电磁冲击力的接线方法

    公开(公告)号:CN114421257B

    公开(公告)日:2022-10-25

    申请号:CN202210099366.3

    申请日:2022-01-27

    Abstract: 一种高真空环境下抑制电磁冲击力的接线方法,涉及一种脉冲功率电源接线方法。该方法主要步骤为:(1)脉冲功率电源同轴电缆传输;(2)汇流盘汇流;(3)同轴电缆内外芯分离;(4)与真空舱壁上的一组高压密封电极连接;(5)负载线圈输入输出两个端口之间的距离较近时,使用同轴电缆转接器连接高压密封电极;(6)与负载线圈的输入输出端口处的接线器连接;(7)与负载线圈连接;(8)负载线圈输入输出两个端口之间的距离较远时,使用增距转接器连接高压密封电极;(9)增距转接器通过两个单芯电缆与负载的输入输出端连接。使用该接线方法,能够抑制脉冲功率电源在真空舱内传输路径产生的电磁冲击力。

    一种用于高真空度真空舱的舱内同轴电缆转接器

    公开(公告)号:CN114361892B

    公开(公告)日:2022-08-23

    申请号:CN202210038500.9

    申请日:2022-01-13

    Abstract: 一种用于高真空度真空舱的舱内同轴电缆转接器,涉及一种脉冲功率电源接线装置,是为了解决真空舱外部的脉冲功率电源的输出同轴电缆在经过真空舱壁的接线器时进行了内外芯分离,而进入舱内后脉冲功率电源的输出媒介需要再继续转换为同轴电缆的问题。它通过使用该舱内同轴电缆转接器能够将舱外脉冲功率电源输出电缆已经分离的内外芯传输电流线路在舱内重新合并为同轴电缆的传输形式,并通过两根同轴电缆传输脉冲大电流从而减小其对单根同轴电缆的冲击影响,本发明适用于高真空度真空舱的舱内同轴电缆转接场合。

    一种用于多个不同负载的脉冲功率电源高压接线系统

    公开(公告)号:CN114531054A

    公开(公告)日:2022-05-24

    申请号:CN202210252601.6

    申请日:2022-03-15

    Abstract: 一种用于多个不同负载的脉冲功率电源高压接线系统,属于脉冲功率电源电能传输技术领域。它包括汇流盘、过渡电缆、转接器;汇流盘包括输入外芯汇流板、输入内芯汇流板、外芯连接片、内芯连接片、输出内芯汇流板、输出外芯连接点、输出外芯汇流板、输出内芯连接点,其作用是汇聚一套脉冲功率电源中各模块的输出电流传输给对应线圈,并分离输出电缆内外芯,还可以改变各子线圈串并联方式;过渡电缆用于分配和分散总电流,为可移动线圈提供缓冲距离;转接器包括:外芯汇流板、内芯汇流板、流入端导线、流出端导线,其用来分离过渡电缆内外芯并与线圈连接,改变流入线圈电流的极性。使用该高压接线系统可实现脉冲功率电源系统与18个线圈的可靠连接。

    一种高真空环境下抑制电磁冲击力的接线方法

    公开(公告)号:CN114421257A

    公开(公告)日:2022-04-29

    申请号:CN202210099366.3

    申请日:2022-01-27

    Abstract: 一种高真空环境下抑制电磁冲击力的接线方法,涉及一种脉冲功率电源接线方法。该方法主要步骤为:(1)脉冲功率电源同轴电缆传输;(2)汇流盘汇流;(3)同轴电缆内外芯分离;(4)与真空舱壁上的一组高压密封电极连接;(5)负载线圈输入输出两个端口之间的距离较近时,使用同轴电缆转接器连接高压密封电极;(6)与负载线圈的输入输出端口处的接线器连接;(7)与负载线圈连接;(8)负载线圈输入输出两个端口之间的距离较远时,使用增距转接器连接高压密封电极;(9)增距转接器通过两个单芯电缆与负载的输入输出端连接。使用该接线方法,能够抑制脉冲功率电源在真空舱内传输路径产生的电磁冲击力。

    一种用于高真空高电压条件下的随动线圈接线装置

    公开(公告)号:CN114421200A

    公开(公告)日:2022-04-29

    申请号:CN202210049866.6

    申请日:2022-01-17

    Abstract: 一种用于高真空高电压条件下的随动线圈接线装置,涉及一种脉冲功率电源接线装置。为了解决真空舱外的脉冲功率电源与真空舱内的两个磁镜场线圈的需要可靠绝缘连接,且需要满足两个磁镜场线圈串联连接的方式,同时连接线路需要跟随单独两个磁镜场线圈进行运动的问题,该装置包括上部随动线圈接线装置、下部随动线圈接线装置和导向柱。上部随动线圈接线装置通过串联同轴电缆与下部随动线圈接线装置连接,下部随动线圈接线装置通过输出同轴电缆与真空舱外脉冲功率电源连接,上部随动线圈接线装置和下部随动线圈接线装置能够沿着导向柱的径向方向进行运动。本发明适用于高真空高电压条件下的随动线圈接线场合。

    一种用于高真空度真空舱的舱内同轴电缆转接器

    公开(公告)号:CN114361892A

    公开(公告)日:2022-04-15

    申请号:CN202210038500.9

    申请日:2022-01-13

    Abstract: 一种用于高真空度真空舱的舱内同轴电缆转接器,涉及一种脉冲功率电源接线装置,是为了解决真空舱外部的脉冲功率电源的输出同轴电缆在经过真空舱壁的接线器时进行了内外芯分离,而进入舱内后脉冲功率电源的输出媒介需要再继续转换为同轴电缆的问题。它通过使用该舱内同轴电缆转接器能够将舱外脉冲功率电源输出电缆已经分离的内外芯传输电流线路在舱内重新合并为同轴电缆的传输形式,并通过两根同轴电缆传输脉冲大电流从而减小其对单根同轴电缆的冲击影响,本发明适用于高真空度真空舱的舱内同轴电缆转接场合。

    用于模块化脉冲功率电源的抗电磁干扰模块控制系统

    公开(公告)号:CN114094813A

    公开(公告)日:2022-02-25

    申请号:CN202111342158.3

    申请日:2021-11-12

    Abstract: 用于模块化脉冲功率电源的抗电磁干扰模块控制系统,涉及脉冲功率技术领域,是为了实现能够在高压大电流复杂电磁环境下,通过抗电磁干扰的模块控制系统来保证模块化脉冲功率电源的129个模块能够稳定可靠地执行控制系统发送的指令以及上传各个放电模块和充电机的状态参数给控制系统,进而能够为18个线圈提供具有多种输出时序、灵活可调的激励电流的目的,该系统包括:远程控制系统、数据存储系统、光纤交换机、不间断电源、本地控制器、放电模块控制器、充电机控制器。本发明实现了在高压大电流复杂电磁环境下,模块化脉冲功率电源具有较好的电磁兼容性。

    一种用于调控模拟磁层顶磁场位形的脉冲功率装置

    公开(公告)号:CN113934253A

    公开(公告)日:2022-01-14

    申请号:CN202111248542.7

    申请日:2021-10-26

    Abstract: 一种用于调控模拟磁层顶磁场位形的脉冲功率装置,本发明专利涉及脉冲功率技术领域。该装置包括6套脉冲功率装置、安全连锁设备,同步触发设备,数据交换机,远程控制系统和数据存储设备;远程控制系统用于与数据交换机之间实现数据交互,完成远程控制;数据交换机用于与6套脉冲功率装置、安全连锁设备和同步触发设备实现数据交互;同步触发设备用于触发6套脉冲功率装置;安全连锁设备用于接收6套脉冲功率装置输出的故障信号,并发出锁定信号至同步触发设备;数据存储设备用于与数据交换机实现数据交互,实现数据存储。本发明实现了在多种实验条件下对模拟磁层顶磁场位形的调控。

    佳拉洁雅磁阱结构下测量等离子体时间参数的装置及方法

    公开(公告)号:CN106952671B

    公开(公告)日:2018-09-21

    申请号:CN201710295702.0

    申请日:2017-04-28

    Abstract: 本发明提供佳拉洁雅磁阱结构下测量等离子体时间参数的装置及方法;包括以下步骤:步骤A10:在等离子体进入磁阱之前,为电探针通电,开始得到4个电探针所对应的模拟电流,并输出实时I‑t特性曲线;步骤A20:计算等离子体未进入磁阱空间时的电探针初始电流I0;步骤A30:依据实时I‑t特性曲线,计算四个电探针流过电流最大的时间t1、t2、t3、t4,即为等离子体经由溜槽线圈进入磁阱内部的时间;步骤A40:依据步骤A30得到的电探针流过电流最大的时间t1、t2、t3、t4,来计算等离子体填充时间Tf;步骤A50:依据步骤A20中计算出的I0,计算等离子体逃逸时间步骤A60:依据在步骤A40中计算的等离子体填充时间Tf,和在步骤A50中计算的等离子体逃逸时间计算等离子体约束时间Tc。

Patent Agency Ranking