一种硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末及其制备方法

    公开(公告)号:CN113441715B

    公开(公告)日:2023-05-23

    申请号:CN202110734749.9

    申请日:2021-06-30

    Abstract: 本发明提供一种硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末及其制备方法,该制备方法包括以下步骤:将H3BO3、TiO2、WO3、MoO3、Nb2O5、Ta2O5和炭黑球磨混合后,得到混合粉末。然后将混合粉末经碳热还原氮化反应,得到硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末。本发明在原料中添加适当过量的硼元素不仅可以净化晶界,而且硼元素还能分别与过剩的游离碳和氮原位反应生成BC或BN,从而发挥第二相粒子的强韧化作用。本发明制备得到的硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末为超细固溶体粉末,其是制备高性能B掺杂超细晶(Ti,W,Mo,Nb,Ta)(C,N)‑Co‑Ni金属陶瓷的前提。

    一种高强度高韧性的高熵金属陶瓷及其制备方法

    公开(公告)号:CN113444952A

    公开(公告)日:2021-09-28

    申请号:CN202110735002.5

    申请日:2021-06-30

    Abstract: 本发明提供一种高强度高韧性的高熵金属陶瓷及其制备方法,高熵金属陶瓷为(TiaWbMocNbdTae)CxN1‑x金属陶瓷。其中,0.2≤x≤0.8,Ti、W、Mo、Nb、Ta的含量范围为0.1≤(a,b,c,d,e)≤0.3。该高熵金属陶瓷的制备方法包括:将TiO2、WO3、MoO3、Nb2O5、Ta2O5和炭黑球磨后,经碳热还原氮化,得到(Ti,W,Mo,Nb,Ta)(C,N)粉。然后在(Ti,W,Mo,Nb,Ta)(C,N)粉中加入Co粉和Ni粉混合,得到混合粉末。该混合粉末经球磨、过筛、干燥后,将其置于石墨模具中进行放电等离子烧结,得到高熵金属陶瓷。本发明将多组元按等摩尔或近等摩尔的比例进行固溶,高的构型熵有利于单相固溶体的形成,并通过多组元协同作用从而提高材料的性能,得到的高熵金属陶瓷的整个硬质相为高熵合金,具有较高的硬度、强度和韧性。

    一种硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末及其制备方法

    公开(公告)号:CN113441715A

    公开(公告)日:2021-09-28

    申请号:CN202110734749.9

    申请日:2021-06-30

    Abstract: 本发明提供一种硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末及其制备方法,该制备方法包括以下步骤:将H3BO3、TiO2、WO3、MoO3、Nb2O5、Ta2O5和炭黑球磨混合后,得到混合粉末。然后将混合粉末经碳热还原氮化反应,得到硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末。本发明在原料中添加适当过量的硼元素不仅可以净化晶界,而且硼元素还能分别与过剩的游离碳和氮原位反应生成BC或BN,从而发挥第二相粒子的强韧化作用。本发明制备得到的硼掺杂超细(Ti,W,Mo,Nb,Ta)(C,N)粉末为超细固溶体粉末,其是制备高性能B掺杂超细晶(Ti,W,Mo,Nb,Ta)(C,N)‑Co‑Ni金属陶瓷的前提。

    一种碳量子点荧光发射波长的调控方法及碳量子点

    公开(公告)号:CN108531171B

    公开(公告)日:2021-01-29

    申请号:CN201810617381.6

    申请日:2018-06-15

    Abstract: 本发明涉及一种碳量子点荧光发射波长的调控方法,即采用磷酸作为修饰调节剂,对碳量子点表面的官能基进行修饰,使碳量子点的荧光发射波长发生变化。本发明利用磷酸作为化学修饰调节剂对碳量子点进行表面官能基的修饰,可有效调控碳量子点的发射波长,获得具有不同荧光颜色的碳量子点,该方法简单高效,且绿色环保。

    一种具有耐氧化涂层的钨制品及其制备方法

    公开(公告)号:CN112226728A

    公开(公告)日:2021-01-15

    申请号:CN202011102664.0

    申请日:2020-10-15

    Abstract: 本发明属于钨制品制备领域,涉及一种具有耐氧化涂层的钨制品及其制备方法。该方法包括:将钨制品基体浸入酸性电解液中并在氩气保护下于15~20V的电解压力下电解2~3分钟,电解液中含有10~15vt%氢氟酸、15~20vt%硝酸且余量为水,超声波清洗后烘干,之后埋入涂层渗料中并依次在700~750℃下保温5~10小时和在900~1000℃保温3~8小时,涂层渗料中含有15~20wt%铝粉、5~10wt%硼粉、2~5wt%氯化铵、2~5wt%氟化钠且余量为氧化铝粉,全程通入氩气保护。采用本发明提供的方法能够显著提高钨制品的抗氧化性,同时能够保持钨制品的强度和硬度,并可防止金属钨制品的变形,保持其精度。

    一种氮化铝氮化硼复合陶瓷材料及其制备方法

    公开(公告)号:CN111217611A

    公开(公告)日:2020-06-02

    申请号:CN202010100359.1

    申请日:2020-02-18

    Abstract: 本发明涉及一种氮化铝氮化硼复合陶瓷材料及其制备方法,所述氮化铝氮化硼复合陶瓷材料中氮化铝与氮化硼的质量比为9/1~3/2,层状氮化硼均匀分布于氮化铝基体中,氮化铝与氮化硼的晶界处形成氧化硼薄膜,所述氧化硼薄膜的厚度为30~50nm。本发明所述氮化铝氮化硼复合陶瓷材料拥有优异耐氧化性能,利用其制备的模具的热导率、抗弯抗弯强度和加工抛光等综合性能良好,可代替目前使用的石墨模具,解决石墨模具因不耐氧化而出现需保护气氛中使用、精度降低和需定时修复等问题。

    一种铌或铌合金表面低温制备钨功能涂层的方法

    公开(公告)号:CN105861981B

    公开(公告)日:2019-05-28

    申请号:CN201610272296.1

    申请日:2016-04-28

    Abstract: 一种铌或铌合金表面低温制备钨功能涂层的方法,包括以下步骤:S1,将基体表面抛光处理,所述基体包括铌、铌合金或其组合;S2,将抛光后的基体埋入包埋渗剂中反应,其中包埋温度为200‑300℃,保温时间为1‑10h,所述包埋渗剂包括均匀分散的WCl6粉、活化剂和Al2O3粉,且所述包埋渗剂中WCl6粉的比例为25‑55wt.%;S3,保温结束后,清洗包埋后的基体并真空干燥。本发明采用包埋法,将基体放入WCl6的包埋渗剂中,基体与包埋渗剂在200℃‑300℃发生扩散反应,无需采用高温或加压的方法获得涂层,降低了对设备的要求,适合规模化生产。

    采用粉末冶金工艺制备的Fe-50%Co系软磁合金及方法

    公开(公告)号:CN105931791B

    公开(公告)日:2019-01-22

    申请号:CN201610234579.7

    申请日:2016-04-15

    Abstract: 本发明公开一种采用粉末冶金工艺制备Fe‑50%Co系软磁合金的方法,包括:S1,将羰基铁粉、钴粉以及Fe3P粉末混合均匀,其中:Co含量为50wt%,P含量为0.2~1.2wt%,余量为Fe;S2,将步骤S1所获得的混合物与粘结剂在135~145℃混炼获得具有流变性能的喂料,其中,所述混合物与所述粘结剂的体积比为50~60:50~40;S3,将步骤S2所获得的喂料在注射成形机上采用注射成形技术制备出预定形状的Fe‑50%Co系坯体;S4,脱除所述Fe‑50%Co系坯体中的粘结剂;S5,将步骤S4中所获得的产物在900℃‑1100℃下烧结2‑8小时。本发明还涉及一种由上述方法获得的Fe‑50%Co系软磁合金。

    一种金属钨表面WAl4-AlN-Al2O3高温绝缘涂层及其制备方法

    公开(公告)号:CN105349936B

    公开(公告)日:2018-08-14

    申请号:CN201510763332.X

    申请日:2015-11-11

    Abstract: 本发明公开了一种金属钨表面WAl4‑AlN‑Al2O3高温绝缘涂层及其制备方法,该方法首先在氨气气氛中,利用氨解渗氮法在钨表面制备氮化钨层;然后在惰性气体或氢气的保护下,通过包埋铝化在钨表面制备一层WAl4‑AlN层;最后将WAl4‑AlN层氧化,使其在钨材料表面形成WAl4‑AlN‑Al2O3绝缘层。本发明在金属钨表面制备WAl4‑AlN‑Al2O3高温绝缘涂层材料工艺简单,生产成本低,具有良好的电绝缘性能,可作为聚变堆中钨包层材料的绝缘涂层。

Patent Agency Ranking