基于分类激活映射自举的路面裂痕分割方法及装置

    公开(公告)号:CN119229130B

    公开(公告)日:2025-02-14

    申请号:CN202411736952.X

    申请日:2024-11-29

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分类激活映射自举的路面裂痕分割方法及装置,涉及人工智能、机器视觉领域,方法包括:训练基于深度网络的正常与裂痕路面分类模型;利用类激活映射方法生成路面图像的激活映射图,通过高激活阈值筛选出类别高激活掩码并进行增强操作后,加入路面图像训练集;重复上述步骤,直到达到设定条件;基于训练好的正常与裂痕路面分类模型生成待推理的路面图像的激活映射图,通过裂痕掩码阈值获得待推理的路面图像的裂痕掩码,作为裂痕分割结果。本发明利用分类模型与激活映射,寻找类别高激活掩码更新路面图像训练集,不断迭代优化掩码效果,以改善路面裂痕分割效果,无需对裂痕进行像素级的标注,大大降低了标注成本。

    基于区块类别编码的电缆图像分割方法及装置

    公开(公告)号:CN119339084A

    公开(公告)日:2025-01-21

    申请号:CN202411836240.5

    申请日:2024-12-13

    Abstract: 本发明公开了一种基于区块类别编码的电缆图像分割方法及装置,涉及图像处理领域,包括:构建电缆图像分割模型和区块编码模块,将电缆分割训练数据中的图像数据输入到语义分割编码器,得到区块特征,将区块特征输入到语义分割解码器,得到语义类别概率,基于语义类别概率和语义类别标签构建语义分割损失函数,将语义类别标签输入到区块编码模块,得到区块类别标签,基于语义类别概率和区块类别标签构建相关性匹配损失函数,并计算得到总损失函数,基于总损失函数对电缆图像分割模型进行训练,得到经训练的电缆图像分割模型;利用经训练的电缆图像分割模型进行图像分割。本发明解决目前电缆图像分割技术中分割不完整、准确率低的问题。

    基于高效频域Transformer的轻量级图像超分辨率方法及装置

    公开(公告)号:CN119180752A

    公开(公告)日:2024-12-24

    申请号:CN202411678685.5

    申请日:2024-11-22

    Abstract: 本发明公开了一种基于高效频域Transformer的轻量级图像超分辨率方法及装置,涉及图像处理领域,包括:构建基于高效频域Transformer的图像超分辨率模型并训练,得到经训练的图像超分辨率模型,图像超分辨率模型包括第一卷积层、亚像素卷积层、第二卷积层以及若干个高效频域Transformer模块;获取待重建的低分配率图像和上采样因子并输入经训练的图像超分辨率模型,先经过第一卷积层,得到第一卷积层的输出特征,第一卷积层的输出特征依次经过若干个高效频域Transformer模块,将最后一个高效频域Transformer模块的输出特征与第一卷积层的输出特征相加,得到第二相加结果,第二相加结果依次经过亚像素卷积层和第二卷积层,得到高分辨率重建图像。本发明克服现有Transformer方法计算复杂度过高的问题。

    基于分层时空感知的屏幕内容视频质量评价方法及装置

    公开(公告)号:CN118865075A

    公开(公告)日:2024-10-29

    申请号:CN202411319739.9

    申请日:2024-09-23

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于分层时空感知的屏幕内容视频质量评价方法及装置,涉及视频评价领域,包括:提取屏幕内容视频中的若干个碎片化视频和若干个关键帧并输入经训练的屏幕内容视频质量评价模型,每个关键帧输入显著性计算模块筛选出若干个显著视频块,每个显著视频块输入双通道卷积神经网络,得到每个阶段的多层特征并输入块级质量评估模块,经过空间门特征增强模块,得到每个阶段的增强特征并输入块级质量聚合模块,得到每个视频块的块级质量分数;采用自适应加权策略计算得到空域感知质量分数;碎片化视频输入时域感知质量评估支路,得到时域感知质量分数,两者结合计算得到屏幕内容视频的质量分数,解决现有视频质量评价方法可靠性差的问题。

    基于全局特征与头肩特征多核融合的行人识别方法及装置

    公开(公告)号:CN118397659B

    公开(公告)日:2024-10-15

    申请号:CN202410828405.8

    申请日:2024-06-25

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于全局特征与头肩特征多核融合的行人识别方法及装置,涉及图像识别领域,包括:采用经训练的行人头肩部检测模型对行人图像进行头肩部检测,得到行人头肩部图像;在行人识别模型中,将行人图像和行人头肩部图像分别输入全局特征提取分支和头肩特征提取分支,得到全局特征向量和头肩特征向量并输入多核融合模块进行融合,得到融合特征向量,根据全局特征向量、头肩特征向量和融合特征向量构建损失函数,以训练行人识别模型,得到经训练的行人识别模型;将待识别的行人图像及其对应的行人头肩部图像输入经训练的行人识别模型,得到对应的融合特征向量,再进行行人识别。本发明解决鱼眼摄像机下图像特征差异大、准确度低的问题。

    基于感兴趣区域的VVC码率控制方法及装置

    公开(公告)号:CN118101938A

    公开(公告)日:2024-05-28

    申请号:CN202410497734.9

    申请日:2024-04-24

    Applicant: 华侨大学

    Abstract: 本发明公开了一种基于感兴趣区域的VVC码率控制方法及装置,涉及视频编码领域,方法包括:使用基于残差SSD网络训练的人脸检测模型检测图像中的人脸区域作为ROI;使用斯塔克尔伯格模型对ROI的失真进行建模,并采用二分法求解ROI的目标比特;计算编码图像的JND图作为空域视觉敏感度,对8x8互不重叠的子块进行运动估计,得到时域视觉敏感度;将有约束问题转化为无约束问题,并采用KKT条件进行最优化求解,得到最优拉格朗日乘子用于进行比特分配。本发明考虑视频会议、视频监控等应用对ROI的需求增长,人眼对ROI区域重点关注,提取空时域感知敏感度,对ROI和nROI的比特分配问题分别建模并进行最优化求解,合理进行比特分配。

    一种基于多深度特征融合网络的车辆再识别方法

    公开(公告)号:CN108875754A

    公开(公告)日:2018-11-23

    申请号:CN201810426492.9

    申请日:2018-05-07

    Applicant: 华侨大学

    Abstract: 本发明涉及一种基于多深度特征融合的车辆再识别方法,包括:提取训练车辆图像的深度ID特征,提取训练车辆图像的深度颜色特征,提取训练车辆图像的深度车型特征,将提取的三种深度特征进行组合,获得融合特征,通过Softmax分类函数对融合后的深度特征进行分类。本发明对输入的车辆图像提取深度ID特征、深度颜色特征和深度车型特征并进行有效地融合,实现三种深度特征的互补,获得更有表征能力的融合特征,从而实现准确的车辆再识别。

    一种基于超限学习机和颜色特征融合的行人性别识别方法

    公开(公告)号:CN106960176A

    公开(公告)日:2017-07-18

    申请号:CN201710096262.6

    申请日:2017-02-22

    Applicant: 华侨大学

    Abstract: 本发明一种基于超限学习机和颜色特征融合的行人性别识别方法,包括:提取未标记性别属性的训练图像的超限学习机特征;提取未标记性别属性的输入训练图像HSV颜色特征,将超限学习机特征与颜色特征进行组合,获得融合特征,根据融合特征和训练图像标签利用线性支持向量机SVM训练行人性别分类器;利用训练所得模型提取测试图像特征,同时提取其HSV颜色特征,接着将两类特征进行融合,获得测试图像的融合特征,用训练过程所得线性支持向量机SVM行人性别分类器对融合特征进行分类。本发明对输入图像提取超限学习特征与颜色特征并进行有效融合,实现两种特征的互补,更有效地捕捉行人性别属性,从而提高行人性别识别率。

Patent Agency Ranking