飞行器姿态运动通道间惯性耦合特性的交联影响评估方法

    公开(公告)号:CN104155985A

    公开(公告)日:2014-11-19

    申请号:CN201410389974.3

    申请日:2014-08-08

    Abstract: 本发明公开了一种飞行器姿态运动通道间惯性耦合特性的交联影响评估方法,所述方法包括:确定所述飞行器的偏航、俯仰通道的角速度;并确定所述飞行器的滚动、偏航、俯仰通道的惯量,以及所述滚动通道与偏航通道之间的惯性积;根据确定出的角速度、惯量和惯性积,计算出交联等效力矩,作为评估出的所述偏航、俯仰通道的角速度对所述滚动通道的角速度的耦合特性的交联影响。本发明的技术方案中,实现了对飞行器的滚动通道的惯性耦合特性的交联影响的量化,便于对飞行器在不同飞行条件和飞行阶段下的滚动通道的惯性耦合特性的交联影响的对比,有利于飞行器姿态控制器的设计与研究。

    一种考虑引力补偿的直接制导方法

    公开(公告)号:CN115309059A

    公开(公告)日:2022-11-08

    申请号:CN202211236421.5

    申请日:2022-10-10

    Abstract: 一种考虑引力补偿的直接制导方法,属于飞行器制导与控制领域。首先建立火箭飞行动力学模型,然后计算平均俯仰程序角及平均偏航程序角,利用迭代制导方法,获得最优俯仰角指令和最优偏航角指令;制导飞行,将飞行轨迹离散为N个点,通过数值积分计算目标点位置和速度;进行数值积分,求解得到引力加速度引起的速度增量和位置增量,重复计算,直到某次计算得到的引力加速度引起的速度增量和位置增量与前一次计算得到的相应增量差值小于阈值,认为收敛,得到引力补偿后的实时俯仰角指令和偏航角指令。本发明解决了现有迭代制导和闭路制导方案的不足,考虑了引力补偿,得到的制导指令更接近真实的最优制导指令,提高了制导精度,任务适应性更强。

    一种确定多状态跟踪制导参数的方法

    公开(公告)号:CN105867399B

    公开(公告)日:2017-05-03

    申请号:CN201610244398.2

    申请日:2016-04-18

    Abstract: 本发明公开了一种确定多状态跟踪制导参数的方法,该方法包括:建立飞行器再入飞行过程的多状态运动模型,并对所述多状态运动模型进行小偏差线性化处理,得到处理后的线性化方程;基于所述线性化方程,得到制导方程;基于线性二次调节器LQR,设计LQR跟踪控制器,得到相应的反馈控制律;根据多状态跟踪要求,选取控制器加权矩阵;根据所述控制器加权矩阵和制导方程,计算得到制导参数。通过使用本发明所提供的方法,可以根据所确定的制导参数实现对多个状态量的跟踪控制,降低多个状态量跟踪时的相互影响。

    用于升力式飞行器的下压末段翻身时机调整方法及系统

    公开(公告)号:CN106005481B

    公开(公告)日:2017-03-22

    申请号:CN201610319980.0

    申请日:2016-05-13

    Abstract: 本发明公开了一种用于升力式飞行器的下压末段翻身时机调整方法及系统,包括:建立飞行器在下压末段翻身起判时刻的高度差与翻身时刻待飞航程的映射关系;其中,高度差为飞行器实际高度与标称高度的差值;当处于下压末端的飞行器的实际待飞航程小于预设航程阈值时,记录飞行器此时的实际高度,计算飞行器此时的高度差作为判别高度差;通过映射关系计算判别高度差对应的待飞航程,将计算得到的待飞航程作为判别航程;当飞行器的实际待飞航程等于判别航程时,向飞行器发送翻身指令。本发明能够快速确定最佳翻身时机,减小偏差情况下终段高度及速度散布。

    一种升力式飞行器在稀薄流区飞行的倾侧制导方法

    公开(公告)号:CN105836160A

    公开(公告)日:2016-08-10

    申请号:CN201610320247.0

    申请日:2016-05-13

    CPC classification number: B64G1/242

    Abstract: 本发明公开了一种升力式飞行器在稀薄流区飞行的倾侧制导方法,该方法包括:根据飞行器发射点和侧向制导目标点的地心矢径确定侧向单位矢量;根据侧向单位矢量和飞行器在发射系下的实时位置和实时速度,计算飞行器在侧向单位矢量方向上的侧向位置和侧向速度;根据侧向位置和侧向速度,利用比例微分反馈计算侧向制导力和过载指令;根据侧向制导力计算得到倾侧角指令。通过使用本发明所提供的方法,可以方便地实现升力式飞行器在稀薄流区飞行的倾侧制导,解决升力式飞行器在稀薄流区的侧向制导问题。

Patent Agency Ranking