-
公开(公告)号:CN114330035B
公开(公告)日:2022-05-24
申请号:CN202210224593.4
申请日:2022-03-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/28 , G06F111/08 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种高速飞行器气动力性能评估方法,涉及飞行器研究领域,本方法基于外区大尺度湍流结构对近壁湍流脉动的叠加效应和调制效应,根据速度‑温度脉动的广义雷诺比拟,建立高雷诺数壁湍流壁面摩阻和热流脉动预测模型,进而实现基于流场可测信号的可压缩高雷诺数湍流壁面摩阻和热流脉动的准确预测,进而实现高速飞行器气动力性能的准确评估。
-
公开(公告)号:CN114330035A
公开(公告)日:2022-04-12
申请号:CN202210224593.4
申请日:2022-03-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F30/28 , G06F111/08 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种高速飞行器气动力性能评估方法,涉及飞行器研究领域,本方法基于外区大尺度湍流结构对近壁湍流脉动的叠加效应和调制效应,根据速度‑温度脉动的广义雷诺比拟,建立高雷诺数壁湍流壁面摩阻和热流脉动预测模型,进而实现基于流场可测信号的可压缩高雷诺数湍流壁面摩阻和热流脉动的准确预测,进而实现高速飞行器气动力性能的准确评估。
-
公开(公告)号:CN114139465A
公开(公告)日:2022-03-04
申请号:CN202111239727.1
申请日:2021-10-25
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明提供了一种脱体涡模拟模型构造方法,包括以下步骤:步骤1、获取RANS模型控制方程中的湍动能破坏项,确定湍动能破坏项中的长度尺度;步骤2、对长度尺度进行修正,完成新的替代破坏项构建;步骤3、对新的替代破坏项进行网格尺度修正,完成脱体涡模拟模型的构造。本发明提出的模型构造方法,在模拟含分离的湍流流动时,能够更合理地自动区分需要使用RANS的近壁区域和需要使用LES的远离壁面区域,使对流动的解析更加精准,能够在较为苛刻的网格分辨率条件下得到最优的数值模拟结果。
-
公开(公告)号:CN113468679B
公开(公告)日:2021-11-12
申请号:CN202111036423.5
申请日:2021-09-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明提供了一种基于S‑A模型的湍流长度尺度计算方法,包括:步骤1、获取湍动能的理论运输方程中的生成项与耗散项;步骤2、获取S‑A模型控制方程的生成项与破坏项;步骤3、建立名义粘性系数和湍动能之间的近似关系,类比得到S‑A模型中湍动能的生成项和破坏项;步骤4、联立理论运输方程中的生成项与耗散项与S‑A模型中湍动能的生成项和破坏项得到湍流长度尺度代数表达式;步骤5、使用RANS模型对壁湍流进行模拟,得到湍流流动的时均结果,结合湍流长度尺度代数表达式完成湍流长度尺度的计算。本发明能够加快入口边界的人工合成壁湍流向真实壁湍流的发展过程,最终达到提高整个DNS或LES计算精度的目的。
-
公开(公告)号:CN113239473B
公开(公告)日:2021-09-21
申请号:CN202110781547.X
申请日:2021-07-12
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/15 , G06F30/28 , G06F113/08 , G06F113/26 , G06F119/14
Abstract: 本发明公开了用于复合材料性能预测的升力体标模设计方法及飞行器,包括步骤:步骤一,根据给定的约束条件确定飞行器的上下表面轮廓线,先设计上轮廓线,上下表面轮廓线关于x轴对称;步骤二,根据飞行器设计的长度,宽度和头部球面切角确定左右宽度轮廓线,先设计左轮廓线,左右轮廓线关于x轴完全对称;步骤三,设计底部截面曲线;步骤四,设计底部截面曲线完成后,设计截面曲线;步骤五,设计截面曲线后,设计截面曲面;步骤六,设计头部曲面;步骤七,将步骤五、步骤六得到的曲面分别关于y轴、z轴对称,至此完成了x截面处曲线设计,生成该飞行器外形等;本发明利于对复合材料的性能预测方法进行考核及改进等。
-
公开(公告)号:CN112446067A
公开(公告)日:2021-03-05
申请号:CN202011208007.4
申请日:2020-11-03
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/10
Abstract: 本发明提供了一种基于弹性形变的区域网格动态重构方法,包括以下步骤:步骤1、计算变形前内边界到外边界之间的距离;步骤2、计算变形前空间网格点到物面的距离;步骤3、计算空间网格点的分布情况;步骤4、物面网格点更新;步骤5、基于弹性形变完成区域空间网格点动态重构。本发明提出的重构方案只涉及代数运算,网格重构限定于具体区域,计算量小,网格更新效率高;基于弹性拉伸思想,网格点分布与初始网格成比例拉伸或缩短,确保了动态重构后的网格质量;模块化好,实现方便,可适用于机翼变形、控制舵偏转等航空航天领域的数值仿真需求。
-
公开(公告)号:CN109969374A
公开(公告)日:2019-07-05
申请号:CN201910278707.1
申请日:2019-04-09
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
Abstract: 本发明公开了一种用于高超声速边界层转捩研究的标模气动布局及设计方法,这种标模气动布局包括头部椭球头及锥身,头部椭球头与锥身光滑过渡;锥身的底面型线上,与背风面对应的一段为上半截型线,上半截型线为椭圆曲线与CST曲线的线性组合叠加,与飞行器底部对应的一段为下半截型线,下半截型线为椭圆曲线。本发明还提供了用于高超声速边界层转捩研究的标模气动布局的设计方法,这种设计方法能够用于得到上述标模气动布局。本发明提供的标模气动布局能够具备真实飞行器气动布局的典型特征,同时对整个外形可以完全用数学表达式解析描述,以满足飞行试验、数值计算对气动布局的简化需求。
-
公开(公告)号:CN119761266A
公开(公告)日:2025-04-04
申请号:CN202510259175.2
申请日:2025-03-06
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/28 , G06F30/15 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明属于计算流体力学技术领域,公开了一种面向超声速激波湍流干扰的数值模拟方法,包括如下步骤:S100初始化雷诺平均纳维斯托克斯方程中流动物理量,以及#imgabs0#SST湍流模型方程中的湍流特征量;S200求解RANS方程,得到第#imgabs1#时刻的#imgabs2#;根据S200中得到的相关值,计算尺度规约化的无量纲逆压梯度量#imgabs3#;根据S300中得到的#imgabs4#值,计算调节函数#imgabs5#,得到改进的湍动能产生项#imgabs6#;根据S400中得到的#imgabs7#,求解改进的#imgabs8#SST湍流模型方程,得到#imgabs9#;根据S500中得到的#imgabs10#代入S200,迭代求解,直到当RANS方程残差Resn小于一定值ε或达到最大步数N=Nmax时,则停止继续迭代求解。根据S600输出最新流动物理量的平均值#imgabs11#,结束数值模拟。
-
公开(公告)号:CN118627405A
公开(公告)日:2024-09-10
申请号:CN202411110540.5
申请日:2024-08-14
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/27 , G06N3/0442
Abstract: 本申请公开了一种飞行器攻角变化预测方法、装置、设备及存储介质,涉及飞行器技术领域,包括:对来流方向及飞行器运动状态历史信息进行筛选,获取目标来流方向及目标飞行器历史信息;设置目标长短时记忆神经网络,基于目标来流方向及目标飞行器历史信息确定目标长短时记忆神经网络的输入;将飞行器的动力学方程嵌入目标长短时记忆神经网络的损失函数,以确定目标损失函数;基于目标损失函数以及目标长短时记忆神经网络的输入对目标长短时记忆神经网络进行训练,获取训练后神经网络;基于训练后神经网络对飞行器的运动状态进行预测,以基于运动状态的预测结果完成飞行器攻角变化的预测。本申请能够提升对一定时间段内飞行器攻角变化预测的准确性。
-
公开(公告)号:CN118194618A
公开(公告)日:2024-06-14
申请号:CN202410619908.4
申请日:2024-05-20
Applicant: 中国空气动力研究与发展中心计算空气动力研究所
IPC: G06F30/20 , G06F17/16 , G06F111/10 , G06F113/08 , G06F119/14
Abstract: 本发明公开了一种转捩位置预测方法,涉及空气动力学领域,包括:获得能量系数矩阵和特征值;对转捩流场进行重构获得重构后的转捩流场,基于重构后的转捩流场获得特征模态的扰动能量沿流向的演化表达式;将重构后的转捩流场向上游延长至扰动起始位置,向下游延长至转捩结束位置;基于特征模态的扰动能量沿流向的演化表达式计算获得能量增长指数,当能量增长指数到达预设临界值时,流动发生转捩获得转捩起始位置;计算获得流向速度的扰动能量,基于流向速度的扰动能量和扰动起始位置计算获得转捩区长度和转捩结束位置,本方法能够解决传统方法仅能预测单个模态、仅能计算模态稳定性、过度依赖经验值和计算成本高的问题。
-
-
-
-
-
-
-
-
-