-
公开(公告)号:CN107610938A
公开(公告)日:2018-01-19
申请号:CN201710757897.6
申请日:2017-08-29
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用。所述复合材料中尺寸为5~20nm的过渡金属氮化物纳米颗粒嵌布在氮掺杂石墨烯骨架中,且复合材料比表面积较大,含有均匀分布的介孔,导电性良好。所述复合材料的制备方法包括:(1)将模板前驱体、碳源和金属源混合,得到混合后的物料;(2)将步骤(1)所述混合后的物料置于气氛炉中,在非氧化性气氛中煅烧,得到过渡金属氮化物/氮掺杂石墨烯纳米复合材料。所述复合材料用于超级电容器、燃料电池或锂离子电池,应用前景极佳。所述复合材料的制备方法相比于现有技术工艺简单,原料廉价,对设备要求低,能耗低,易于规模化生产。
-
公开(公告)号:CN110317960B
公开(公告)日:2023-08-22
申请号:CN201910695922.1
申请日:2019-07-30
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及生产设备技术领域,公开一种石煤钒矿熟化生产设备及石煤钒矿熟化生产方法。其中石煤钒矿熟化生产设备包括:加热混合组件,其包括带有反应腔的箱体和位于反应腔内的转动轴、桨叶,箱体上设有与反应腔连通的进料口,转动轴可转动设于箱体上,桨叶设在转动轴上;负压收集组件,其包括至少一个集气罩,一个集气罩正对进料口设置,集气罩被配置为回收酸雾和/或粉尘。本发明提供的石煤钒矿熟化生产设备,通过加热混合组件实现了石煤和浓硫酸或者石煤、浓硫酸和水的混合、加热及破碎收集的连续生产过程,还能够通过负压收集组件实现对生产过程中所产生的酸雾和/或粉尘的收集,提高生产效率,减少环境污染。
-
公开(公告)号:CN116042982A
公开(公告)日:2023-05-02
申请号:CN202111266467.7
申请日:2021-10-28
Applicant: 湖北振华化学股份有限公司 , 中国科学院过程工程研究所
Abstract: 本发明提供一种纳米孪晶镍基合金板材及其制备方法,所述纳米孪晶镍基合金板材的微观结构包含晶粒;所述晶粒内部具有纳米孪晶和位错;所述纳米孪晶镍基合金板材中含有纳米孪晶的晶粒占总晶粒数量的80%以上。所述纳米孪晶镍基合金板材的综合力学性能优异,具有优秀的屈服强度、抗拉强度和良好的延伸率;所述制备方法的工艺流程简单,加工成本低廉,条件参数容易调控,能够制备大尺寸产品,直接作为工程材料使用,具有大规模工业化应用前景。
-
公开(公告)号:CN113120923B
公开(公告)日:2022-11-29
申请号:CN201911404898.8
申请日:2019-12-31
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种从混合溶液中分离回收铁、钠和铵的方法,所述方法包括:将混合溶液升温后加入黄铵铁矾晶种进行结晶,固液分离,得到黄铵铁矾晶体和沉铁母液;将沉铁母液蒸发浓缩后冷却结晶,得到硫酸钠和硫酸铵的混合晶体;将黄铵铁矾晶体进行煅烧,得到氧化铁和尾气;将混合晶体进行煅烧,得到硫酸钠和尾气;将尾气进行吸收,得到铵盐溶液。本发明所述方法根据不同离子的特性将溶液中的铁、钠以及铵分离出来,分离效率高,所得产品的纯度较高;本发明所述方法操作简单,环境友好,能耗与原料成本低,经济效益好,有利于工业化规模生产,具有较好的工业应用前景。
-
公开(公告)号:CN111944992B
公开(公告)日:2022-09-13
申请号:CN202010899762.5
申请日:2020-08-31
Applicant: 湖北振华化学股份有限公司 , 中国科学院过程工程研究所
Abstract: 本发明提供了一种从铬铁矿中提取铬的方法,所述方法包括以下步骤:将铬铁矿与铵盐进行混合后在包括水蒸气和还原性气体的气氛中进行焙烧,得到焙烧熟料和尾气;将得到的焙烧熟料与水混合进行浸出,固液分离,得到浸出液和浸出渣,所述浸出渣返回,与铬铁矿混合。本发明所述方法采用铵盐焙烧技术,使铬元素转化为易溶于水的含铬化合物,最后通过水浸处理实现对铬的高效提取;所述方法能耗小、操作简单、浸出渣排放量小、环保节能,铬的浸出率可达到96%以上,具有较好的工业应用前景。
-
公开(公告)号:CN112430735B
公开(公告)日:2022-04-26
申请号:CN201910790830.1
申请日:2019-08-26
Applicant: 中国科学院过程工程研究所
Abstract: 本发明提供了一种酸性提钒尾渣的处理方法,所述方法包括以下步骤:将提钒尾渣进行一级浆化处理,液固分离,所得固相进行洗涤,得到洗涤渣;将所得洗涤渣与添加剂混合后进行二级浆化处理,再次液固分离,所得固相洗涤后得到终渣。本发明通过对酸性提钒尾渣进行两级浆化及洗涤处理,充分回收提钒尾渣上附着的酸以及钒等有价金属组分,得到无污染、可以进一步资源化利用的尾渣,满足第Ⅰ类一般工业固体废物的要求;所述方法尾渣洗涤彻底,洗涤水消耗量低,处理效率高。
-
公开(公告)号:CN113644304A
公开(公告)日:2021-11-12
申请号:CN202111199668.X
申请日:2021-10-14
Applicant: 中国科学院过程工程研究所
IPC: H01M8/18
Abstract: 本发明涉及一种全钒液流电池电解液及其制备方法与应用,所述制备方法包括如下步骤:(1)将钒的氧化物与硫酸进行混合,得到混合物;(2)将步骤(1)所得混合物进行活化,得到活化物;(3)将步骤(2)所得活化物进行溶解,得到含五价钒溶液;(4)向步骤(3)所得含五价钒溶液中通入氢气并加入催化剂,进行还原反应,得到所述全钒液流电池电解液。本发明采用水热还原法将五价钒氧化物还原制备低价态钒电解液,通过加热活化、对还原气体及反应条件调控,增加了五价钒溶解度,简化了制备工艺,降低生产成本。所述方法工艺简单,原料便宜,条件温和,环境友好、避免杂质引入、设备要求低等优势,适合用于全钒液流电池电解液的制备。
-
公开(公告)号:CN112626338A
公开(公告)日:2021-04-09
申请号:CN202011487499.5
申请日:2020-12-16
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种从含四价钒和二价铁酸液中回收钒和铁的方法,所述方法包括如下步骤:(1)向含四价钒和二价铁酸液中加入羟基氧化铁晶种并搅拌,得到预处理液;(2)将得到的所述预处理液进行氧化处理,经固液分离得到钒铁富集物料和滤液;(3)将得到的所述钒铁富集物料和碱液混合,进行转化处理,之后进行水浸经固液分离得到羟基氧化铁和含钒溶液;(4)将得到的所述含钒溶液依次进行净化处理和沉钒,固液分离后得到偏钒酸铵。实现了酸液中钒铁富集、解离及产品化,简单高效实现含钒溶液深度净化,并同步回收了铝资源,本发明具有资源回收率高、产品纯度高、操作简单成本低、无三废排放的优势,具有广阔的应用前景。
-
公开(公告)号:CN109354068B
公开(公告)日:2021-02-05
申请号:CN201811550247.5
申请日:2018-12-18
Applicant: 青海省博鸿化工科技股份有限公司 , 中国科学院过程工程研究所
IPC: C01G37/033 , B82Y30/00 , B82Y40/00
Abstract: 本发明提供了一种氧化铬及其制备方法,所述方法包括:将六价铬盐溶液加入反应装置中,通入保护性气体后密闭升温,达到目标温度后持续通入还原性气体发生反应,得到混合浆料;将所得混合浆料固液分离,得到羟基氧化铬粉体;再将羟基氧化铬粉体进行煅烧处理,得到氧化铬。本发明采用水热还原法由六价铬盐制备氧化铬,通过对还原性气体及反应条件的调控,增强反应过程的可控性,还原率可达99%以上,所得还原产物物相均一,粒度分布较窄,所得氧化铬产品品质较高,可达到颜料级氧化铬的标准;所述方法流程短、能耗及成本低,无污染物排放,是一种清洁生产工艺,具有显著的经济效益。
-
公开(公告)号:CN111809068B
公开(公告)日:2020-12-15
申请号:CN202010934003.8
申请日:2020-09-08
Applicant: 中国科学院过程工程研究所
Abstract: 本发明涉及一种全钒液流电池用偏钒酸铵的制备方法,所述制备方法首先将钒渣、钙基添加剂以及返渣进行焙烧,焙烧时在钙基添加剂以及返渣的作用下,钒渣中含钒尖晶石结构被破坏分解,三价钒高效氧化转化为钒酸钙;然后在近中性有机酸钠溶液中钒酸钙分解,实现了钒的高效浸出;最后浸出液中加入有机酸铵实现浸取剂有机酸钠的转化再生,同时生成全钒液流电池用偏钒酸铵产品。所述制备方法的焙烧过程稳定可控,钒转化率高;浸出过程中的钒浸出率高,浸出过程无铬等杂质浸出;偏钒酸铵结晶完全,产品纯度高,浸取剂有机酸钠再生完全,无外加酸与铵根残留;所述制备方法具有成本低、可连续化生产且无三废排放的优势,具有广阔的应用前景。
-
-
-
-
-
-
-
-
-