-
公开(公告)号:CN112836493A
公开(公告)日:2021-05-25
申请号:CN202011404000.X
申请日:2020-12-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/226 , G06F40/284 , G06F16/33
Abstract: 本发明公开了一种转写文本校对方法及存储介质,包括,基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,并通过所述校对方案确定校对结果。本发明方法基于预先构建的校对样本库对待校对文本按照不同文本粒度进行分析校对,获得对应的候选方案集;根据所述候选方案集确定校对方案,由此从不同的文本粒度出发确定校对方案,提高了转写文本的准确性和语义的合理性。
-
公开(公告)号:CN107992473B
公开(公告)日:2021-04-27
申请号:CN201711190871.4
申请日:2017-11-24
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F40/289 , G06F16/35
Abstract: 本发明涉及一种基于逐点互信息技术的诈骗信息特征词提取方法及系统,该提取方法包括:提取诈骗信息主题关键词,组成主题关键词集合;将信息组中的信息按是否为诈骗信息划分为正样本集合和负样本集合,并得到正样本分词集合、负样本候分词集合和候选关键词集合;根据候选关键词集合的候选关键词在信息组的正相互性PMI值和负相互性PMI值得到候选关键词在信息组的权重,将权重大于预设阈值的候选关键词记为信息组的合格关键词。本发明通过对信息组中的信息进行处理,得到候选关键词集合,计算候选关键词相对于信息的正相互性PMI值和负相互性PMI值,得到候选关键词的权重,由此判断是否为合格关键词,实现了对数据流式信息的关键词提取。
-
公开(公告)号:CN112632597A
公开(公告)日:2021-04-09
申请号:CN202011420230.5
申请日:2020-12-08
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种数据脱敏方法、装置可读存储介质,其中方法包括:根据获取的用户提交的数据文件通过预先训练的标注模型对所述数据文件中的敏感数据进行标注,以获得标注文件;利用预设评测规则对与所述标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对所述标注文件的脱敏。本发明利用预设评测规则对与标注文件的文件类型相匹配的脱敏算法进行评测;根据用户从评测结果中选取的脱敏算法完成对标注文件的脱敏,由此可以通过规则评测和用户选择确定对应的脱敏算法,具有广泛的适用性。
-
公开(公告)号:CN107135281B
公开(公告)日:2020-03-31
申请号:CN201710146433.1
申请日:2017-03-13
Applicant: 国家计算机网络与信息安全管理中心 , 北京信息科技大学
Abstract: 本发明实施例提供一种基于多数据源融合的IP地域类特征提取方法,包括:步骤1、基于现有的IP地址定位数据库,计算每一定位数据库的权威度;步骤2、基于现有的IP地址定位数据库,计算每一定位数据库中定位数据的完整度;步骤3、根据步骤1和步骤2中的每一定位数据库的权威度和每一定位数据库中定位数据的完整度,确定定位数据的可信度;步骤4、根据定位数据的可信度,选取定位数据构建IP地域类特征知识库。
-
公开(公告)号:CN109815789A
公开(公告)日:2019-05-28
申请号:CN201811514183.3
申请日:2018-12-11
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及人脸检测技术领域,具体涉及一种在CPU上实时多尺度人脸检测方法与系统及相关设备,目的在于降低人脸检测的硬件成本,提高人脸检测的速度与准确度。本发明的人脸检测系统包括:特征提取模块、多尺度检测模块和非极大值抑制模块。其中,特征提取模块配置为:从待检测图像中提取关键特征,得到多尺度的待检测特征图;多尺度检测模块配置为:根据多尺度的待检测特征图预测人脸得分和相应的位置;非极大值抑制模块配置为:根据人脸得分进行非极大值抑制,从而得到检测结果。本发明降低了人脸检测的硬件成本,提高了多尺度人脸检测的速度与准确度,能在CPU上实现准确率较高的多尺度人脸检测功能,继而可以应用在手机等平台上。
-
公开(公告)号:CN105871630B
公开(公告)日:2019-03-05
申请号:CN201610370749.4
申请日:2016-05-30
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明提出了一种确定网络用户的上网行为类别的方法,该方法,包括:提取每个待测网络用户的上网行为特征,并通过文档向量空间模型的量化方法形成用户行为特征矩阵X;根据所述用户行为特征矩阵X,通过概率潜在语义分析方法PLSA和EM算法,得到行为倾向集合T以及“用户‑倾向”概率分布矩阵D;根据所述用户行为特征矩阵X,通过支持向量机SVM算法,得到“特征词‑类别”概率分布矩阵C;通过矩阵乘法运行T×C得到“倾向‑类别”映射矩阵M;通过矩阵乘法运行D×M得到“用户‑类别”概率分布矩阵Y;根据任一待测网络用户在各个类别上的概率分布情况,将所述任一待测网络用户分类到概率值最大的类别中。
-
公开(公告)号:CN105069169B
公开(公告)日:2019-03-05
申请号:CN201510547203.7
申请日:2015-08-31
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958
Abstract: 本发明提出了一种网站镜像的检测方法及装置。所述检测方法包括:计算待检测网站的标题信息与原始网站的标题信息的相似度,若所述相似度超过设定阈值,则所述待检测网站为疑似网站;比对所述疑似网站的网页结构中的可视化元素和所述原始网站的网页结构中的可视化元素,若满足预设条件,则判定所述疑似网站为镜像网站,在保证检测准确性的同时,提高网站镜像检测的效率。
-
公开(公告)号:CN109190750A
公开(公告)日:2019-01-11
申请号:CN201810737975.0
申请日:2018-07-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院自动化研究所
Abstract: 本发明涉及深度学习技术领域,具体提供了一种基于对抗生成网络的小样本生成方法及装置,旨在解决如何在少量样本数据的情况下利用生成对抗网络生成样本数据的技术问题。为此目的,本发明提供的基于对抗生成网络的小样本生成方法能够基于对抗生成网络并根据随机噪声和标签信息,生成小样本类型对应的样本。在此过程中,本发明采用迁移学习和批量训练的方法对对抗生成网络进行网络训练,使生成对抗网络可以有效迁移应用于少量样本的对抗生成网络样本生成任务中。
-
公开(公告)号:CN108959351A
公开(公告)日:2018-12-07
申请号:CN201810377825.3
申请日:2018-04-25
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F17/2785 , G06N3/0481
Abstract: 本发明属于自然语言处理技术领域,具体提供一种中文篇章关系的分类方法及装置。旨在解决传统管道系统方法中错误传递的问题。本发明的中文篇章关系的分类方法包括将中文篇章中的句子进行句对的分布式表示,得到第一句对分布式表示向量;计算记忆单元与第一句对分布式表示向量的相似度和权重,得到第一句对分布式表示向量的记忆信息;将第一句对分布式表示向量与记忆信息进行线性组合生成第二句对分布式表示向量;对第二句对分布式表示向量进行分类,得到中文篇章的关系分类结果。本发明的方法通过深度学习网络得到句子内部的语义和结构抽象特征,可以获得优越性能的篇章分类效果。
-
公开(公告)号:CN108647214A
公开(公告)日:2018-10-12
申请号:CN201810270468.0
申请日:2018-03-29
Applicant: 中国科学院自动化研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及语言处理领域,提出了一种基于深层神经网络翻译模型的解码方法,旨在解决机器翻译模型中模型训练复杂度高、训练难度大解码速度慢等问题。该方法的具体实施方式包括:对待翻译语句进行分词处理,得到源语言词汇;步骤2,使用自动对齐工具对预设的翻译模型词汇表中的语料进行词对齐,得到与所述源语言词汇对齐的目标语言单词;步骤3,基于步骤2所得到的目标语言单词,确定出所述待翻译语句的目标端动态词汇表,根据预先构建的翻译模型,使用柱搜索方法解码出的语句作为所述翻译模型的输出;其中,所述翻译模型为基于门限残差机制和平行注意力机制的深层神经网络。本发明提升了模型翻译质量,提高了模型解码速度。
-
-
-
-
-
-
-
-
-