一种机器人宇航员的无触点无线充电系统

    公开(公告)号:CN115360830A

    公开(公告)日:2022-11-18

    申请号:CN202210897109.4

    申请日:2022-07-28

    Abstract: 本发明公开了一种机器人宇航员的无触点无线充电系统,包括发射端和接收端。发射端安装在航天器的充电平台上,接收端安装在空间机器人的能量包上;能量包上设置电池管理模块与接收端连接。发射端与接收端通过载波通信进行信息交互,接收端的逆变模块将航天器母线的直流电源转换为交流电,发送线圈与接收线圈通过电磁感应完成电能的无线、无触点传递。接收端配置电池管理模块,实现高精度充放电、均衡控制,保证电池在安全域运行。充电过程中,没有金属直接裸露在太空环境,彻底消除短路、拉弧、机械接口卡死的风险,满足安全性、稳定性和空间环境适应性要求,实现无人化、智能化的即停即充、即充即走,有效提升机器人航天员的工作效能。

    一种在轨可更换的自适应蓄电池系统及其控制方法

    公开(公告)号:CN112290615B

    公开(公告)日:2022-08-26

    申请号:CN202011063680.3

    申请日:2020-09-30

    Abstract: 本发明公开了一种适应于在轨可更换的蓄电池系统及其控制方法,属于航天器电源技术领域,包括:磁耦合式无线传能副边、有线充放电单元、综合控制单元,蓄电池及其管理调节电路、单刀双掷接触器K1、单刀单掷接触器K2。磁耦合式无线传能副边使用逆变/整流公用的全桥拓扑;有线充放电单元采用四开关的buck‑boost双向拓扑。综合控制单元确定蓄电池系统进入有线功率传输、无线功率传输或待机状态。根据航天器功率状态表征参数MEA值、蓄电池是否需要充电,确定蓄电池系统进入充电、待机或放电模式。根据蓄电池组电压、母线电压、磁谐振副边输出端电压、磁谐振副边所需输入端电压等信息,确认有线升降压单元的调节模式,磁耦合式无线传能副边的调节模式。

    从测试航天器电源系统的仪器设备处采集参数的方法

    公开(公告)号:CN113552497A

    公开(公告)日:2021-10-26

    申请号:CN202110652801.6

    申请日:2021-06-11

    Abstract: 本申请涉及一种从测试航天器电源系统的仪器设备处采集参数的方法,该方法包括:控制机获取其关联的仪器设备的数据采集指令信息;控制机在数据采集开始时间到达时,按照抬杆周期产生抬杆时刻,其中,参数的采集周期被配置为抬杆周期的整数倍;控制机在两个相邻抬杆时刻之间,按照参数的采集周期向仪器设备发送参数对应的SCPI命令,并生成参数采集开始时间戳;以及接收仪器设备返回的参数值,并生成参数采集结束时间戳;控制机向服务器发送抬杆周期内采集的数据。通过SCPI命令实现了从仪器设备采集参数,并且实现了时序控制和数据转发。

    一种航天器间无线配电系统及控制方法

    公开(公告)号:CN110266113B

    公开(公告)日:2021-02-12

    申请号:CN201910458265.9

    申请日:2019-05-29

    Abstract: 本发明涉及了一种航天器间无线配电系统,基于传统LCC拓扑结构改进,其发射端LCC补偿电路包括原边补偿电感、原边第一串联补偿电容和原边并联补偿电容,接收端LCC补偿电路包括副边第一串联补偿电容、副边并联补偿电容和副边补偿电感,还包括与原边补偿电感串联的第一开关、相互串联的第二开关和原边第二串联补偿电容、与副边补偿电感串联的第三开关以及相互串联的第四开关和副边第二串联补偿电容,且第二开关和原边第二串联补偿电容的串联支路与第一开关、原边补偿电感和原边第一串联补偿电容的串联支路并联,第四开关和副边第二串联补偿电容的串联支路与第三开关、副边补偿电感和副边第一串联补偿电容的串联支路并联,兼顾传输距离与能量传输效率。

Patent Agency Ranking