-
公开(公告)号:CN118395696A
公开(公告)日:2024-07-26
申请号:CN202410498141.4
申请日:2024-04-24
Applicant: 北京航天长征飞行器研究所
IPC: G06F30/20 , G06F119/08
Abstract: 本发明提出一种基于定标点映射关系的地面光热环境模拟方法,属于空间环境地面模拟技术领域,包括如下步骤:步骤一、建立地面系统光热环境模型;步骤二、仿真模型标定与验证;标定各设备物性参数,并测量标定目标区域真实的光谱辐射及热流情况,进行仿真模型校验;步骤三、在目标测试区域外,设定大于等于2个点位作为地面模拟环境建立定标点,并建立定标点处与目标区热流映射关系,通过控制定标点位置处热流达到地面模拟环境建立条件;步骤四、基于定标点地面光热环境模拟;根据映射关系判断目标区光热环境是否满足试验条件。本发明所述技术方案由于不需要在目标表面粘贴环境监测设备,减少监测装置对目标光电特性的影响,提高了模拟精度。
-
公开(公告)号:CN117571135A
公开(公告)日:2024-02-20
申请号:CN202311172106.5
申请日:2023-09-12
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明提出一种基于图像结合的多材质目标温度特征提取方法,属于测量测试技术领域,包括以下步骤:S1、通过可见光与红外成像系统分别获取目标可见光与红外图像;S2、红外成像系统黑体辐射定标,确定红外图像中像素值所对应的辐射量;S3、盲元检测与非均匀性校正,消除红外图像中的盲元以及非均匀性噪声;S4、修正成像系统对红外辐射空间分布的影响;S5、计算大气路径辐射与大气透过率;S6、基于surf算法,生成与红外图像空间对齐的可见光图像;S7、基于Kmeans聚类分割算法,分割可见光图像,进而获取红外目标材质分布;S8、赋予不同材质其对应的发射率,通过普朗克公式计算目标表面温度。本发明消除了因材质发射率变化而产生的温度计算误差。
-
公开(公告)号:CN115793270A
公开(公告)日:2023-03-14
申请号:CN202211511862.1
申请日:2022-11-29
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明提出一种长工作距、大视场的低温真空冷舱准直光学系统,属于光学技术领域,光路部分包括入瞳及孔径光阑、主镜、次镜、三镜和像面;主镜和三镜是凹非球面镜,次镜是凸面非球面镜;像面包括背景焦面及测试焦面、目标焦面和干扰焦面,系统的光轴为光轴;次镜的光轴与光轴重合,主镜和三镜的光轴相对于系统的光轴有离轴量,在光的传播方向上,依次排列入瞳、主镜、次镜、三镜和像面;主镜是光焦度为正的非球面反射镜,次镜是光焦度为负的非球面反射镜,三镜是光焦度为正的非球面反射镜;主镜和次镜的反射面相对放置,次镜和三镜的反射面相对放置,三镜与焦面相对放置。本发明解决了现有技术视场小,工作距短的问题。
-
公开(公告)号:CN115711730A
公开(公告)日:2023-02-24
申请号:CN202211511855.1
申请日:2022-11-29
Applicant: 北京航天长征飞行器研究所
Inventor: 薛莲 , 刘佳琪 , 高路 , 艾夏 , 束逸 , 李志峰 , 白文浩 , 李建华 , 牛振红 , 蔡雯琳 , 赵茜 , 朱紫辉 , 秦雪 , 张中杰 , 马凯 , 张星祥 , 申军立 , 朱明超 , 刘春龙 , 张凯
IPC: G01M11/02
Abstract: 本发明提出一种运动、能量、尺度连续可控的红外目标模拟系统,属于光学设备测试技术领域,包括黑体、滤光片组件、对接光学系统、目标发生器箱体、目标单元箱体和四维运动平台;黑体加热并发射红外波段作为红外目标,通过滤光片组件滤波后进入对接光学系统;黑体设置在目标发生器箱体内,做温控后隔热安装在目标单元箱体的入射一侧,接触面上设置有透射光孔;滤光片组件和对接光学系统设置在目标单元箱体内,目标单元箱体的出射一侧设置有出光口;对接光学系统与准直光学口径匹配,目标发生器箱体和目标单元箱体固定在四维运动平台上,解决了采用现有技术模拟目标的能量、尺度无法实现快速可控变化的问题。
-
公开(公告)号:CN112449121A
公开(公告)日:2021-03-05
申请号:CN202011289164.2
申请日:2020-11-17
Applicant: 北京航天长征飞行器研究所
Inventor: 薛莲 , 李建华 , 金惠松 , 李志峰 , 牛振红 , 杜润乐 , 薛峰 , 蔡雯琳 , 赵茜 , 张力 , 束逸 , 刘佳琪 , 刘鑫 , 赵巨岩 , 刘洪艳 , 高路 , 彭程远 , 艾夏
IPC: H04N5/33
Abstract: 本发明涉及一种超宽谱大靶面红外目标生成装置,包括:红外阴极射线显像管、光学投影系统、信号处理变换电路、控制系统、驱动信号线缆;控制系统控制待显示的场景图像的加载,发送给信号处理变换电路;信号处理变换电路将待显示的场景图像转换为红外阴极射线显像管的驱动信号,通过驱动信号线缆驱动红外阴极射线显像管生成红外辐射;红外阴极射线显像管生成红外辐射信号,光学投影系统对红外辐射信号进行准直输出,将红外辐射信号转换为平行光投影到指定的出瞳位置,实现输出的红外辐射与被测的红外热像仪视场匹配,入瞳与出瞳的匹配。本发明提供了覆盖中波红外到长波红外3~12μm的超宽谱段,大靶面高帧频红外场景生成装置。
-
公开(公告)号:CN109815550B
公开(公告)日:2019-08-13
申请号:CN201811615645.0
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
IPC: G06F17/50
Abstract: 本发明公开一种空间目标地面模拟试验光学特性测量方法,是基于一球形容器构建近场测量环境,在所述球形容器上接一段加长通光光程筒构建远场测量环境;测量设备是基于将方位角和俯仰角转换为转台下的旋转角进行测量。本发明可实现空间目标近远场光学特性的测量。在该方法中,采用坐标转换的方法获得测试转台下的转角,将测量方位转换到转台转角下,可以方便操控转台。
-
公开(公告)号:CN109520623A
公开(公告)日:2019-03-26
申请号:CN201811613760.4
申请日:2018-12-27
Applicant: 北京航天长征飞行器研究所
Abstract: 本发明涉及一种真空低温环境下在线实时辐射标校装置,所述标校装置包括:变温源系统,所述变温源系统采用液氮冷却与电加热双控方式对辐射体控温;液氮冷却系统,所述液氮冷却系统用于对辐射体进行冷却;真空罩,所述真空罩用于构成真空低温环境;温控系统,所述温控系统用于对变温源系统的温度控制。该标校装置具备行走和角度调整能力,能够在一次试验中,灵活移入、移出测量路径,有效剔除测量路径杂散辐射,提高辐射定标精度。
-
公开(公告)号:CN117557461A
公开(公告)日:2024-02-13
申请号:CN202311311574.6
申请日:2023-10-11
Applicant: 北京航天长征飞行器研究所
Inventor: 刘佳琪 , 张涵 , 李建华 , 李志峰 , 朱紫辉 , 薛峰 , 高路 , 方艺忠 , 毛宪宁 , 金文 , 付思帅 , 薛莲 , 牛振红 , 杜润乐 , 蔡雯琳 , 郑沛 , 刘鹏
Abstract: 一种红外点目标图像仿真生成方法及系统,包括:确定点目标的灰度响应G;根据点目标的灰度响应G和弥散灰度分布值,进行目标衍射弥散处理,获得目标图像P;将目标图像P、背景图像和背景噪声进行图像叠加,获得探测图像,完成图像仿真生成方法。本发明基于物理过程实现仿真,用于生成大量点目标红外仿真图像和视频,提升仿真精度。
-
公开(公告)号:CN117193972A
公开(公告)日:2023-12-08
申请号:CN202311097579.3
申请日:2023-08-29
Applicant: 北京航天长征飞行器研究所
Inventor: 付思帅 , 高路 , 赵巨岩 , 方艺忠 , 李建华 , 李志峰 , 金文 , 毛宪宁 , 薛峰 , 江志烨 , 郑沛 , 牛振红 , 束逸 , 杜润乐 , 薛莲 , 蔡雯琳 , 朱紫辉 , 何重航 , 罗浩 , 陈光
Abstract: 本发明公开了一种SOC处理器的任务执行方法和电子设备。任务执行方法包括:在多个功能模块之间按序流转执行任务,其中,在多个功能模块中的任一目标功能模块内执行如下步骤:进入目标功能模块;根据目标功能模块的任务描述字,确定目标功能模块当前处于第一任务状态;判断目标功能模块是否满足第一任务状态到第二任务状态的转移条件,第一任务状态和第二任务状态为相同或不同的任务状态;如果满足,将目标功能模块的状态由第一任务状态转移至第二任务状态,并在此次状态转移完成后跳出目标功能模块。以分层和解耦为目标,实现国产化SOC软件通用实时架构设计技术,该软件架构层次合理、安全可靠、高实时、易扩展。
-
公开(公告)号:CN112505795A
公开(公告)日:2021-03-16
申请号:CN202011119611.X
申请日:2020-10-19
Applicant: 北京航天长征飞行器研究所
Inventor: 李建华 , 李志峰 , 薛峰 , 赵茜 , 蔡雯琳 , 薛莲 , 牛振红 , 杜润乐 , 束逸 , 张力 , 刘佳琪 , 刘鑫 , 赵巨岩 , 刘洪艳 , 高路 , 彭程远 , 艾夏
Abstract: 一种用于GEO卫星全向告警的光电探测系统及方法,属于全向告警技术领域,将GEO卫星等效为一个长方体,将四个转台分别安装在GEO卫星上垂直于GEO轨道面的四个棱边上,每个转台上安装一个可见光相机,另外两个相机直接安装在与GEO轨道面平行的两个面上;四个转台根据GEO卫星与太阳的位置与角度关系,控制GEO轨道面内的四个可见光相机避开太阳直射,并且保证不被卫星遮挡,同时覆盖太阳规避角以外的空间区域;在GEO卫星上安装至少一个日盲紫外相机,并保持紫外相机的视场始终覆盖地球;根据六个可见光相机获取的光学图像、至少一个紫外相机获取的紫外图像,判断是否存在需要告警的目标。
-
-
-
-
-
-
-
-
-