-
公开(公告)号:CN104297703B
公开(公告)日:2017-03-01
申请号:CN201310306933.9
申请日:2013-07-19
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/035
Abstract: 本发明提供一种超导量子干涉传感器及所适用的磁探测器。根据本发明所述的磁探测器,由偏置电路向所述超导量子干涉传感器中的放大器提供偏置电压,所述放大器经分压电阻分压,将分压后的偏置电压提供给超导量子干涉传感器中的超导量子干涉器件,同时,利用所述偏置电压将所述超导量子干涉器件输出的电信号予以放大并输出,其中,所述超导量子干涉传感器还被浸放在使超导量子干涉器件处于超导状态的容器中。本发明所述的磁探测器由放大器向超导量子干涉器件提供偏置电压能够有效解决现有的放大器和超导量子干涉器件分用偏置电路而使所述干涉器件的集成度低、电路结构复杂等问题。
-
公开(公告)号:CN105866710A
公开(公告)日:2016-08-17
申请号:CN201610192292.2
申请日:2016-03-30
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/00 , G01R33/035
CPC classification number: G01R33/0029 , G01R33/007 , G01R33/0354
Abstract: 本发明提供一种环境噪声抑制方法及设备,所述环境噪声抑制设备包括探测梯度组件,参考梯度组件,超导量子干涉器件三轴磁强计组件,读出电路,所述环境噪声抑制方法包括以下步骤:采集源于所述探测梯度组件的第一梯度输出信号和源于所述参考梯度组件的第二梯度输出信号;利用所述超导量子干涉器件三轴磁强计组件分别补偿所述探测梯度组件和所述参考梯度组件;令所述第一梯度输出信号与第二梯度输出信号相互补偿以合成二维梯度抑制环境噪声。本发明无需单独增加一阶梯度参考量,采用制备工艺之间的关联特性,在二个维度上进行梯度合成,从而在大大提高梯度计的噪声抑制性能,简化系统探测结构。
-
公开(公告)号:CN105842636A
公开(公告)日:2016-08-10
申请号:CN201610164966.8
申请日:2016-03-22
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R33/00 , G01R33/022 , G01R33/035
CPC classification number: G01R33/0052 , G01R33/0035 , G01R33/022 , G01R33/0354
Abstract: 本发明提供一种基于室温标定的梯度计等效误差面积校正方法及系统,包括步骤S1、绕制梯度线圈;步骤S2、对梯度线圈进行室温标定,获取等效误差面积;步骤S3、根据梯度线圈室温标定的结果,调整可调线圈的面积和/或方向,重复步骤S2?S3,直至梯度线圈的误差面积小于等于预定误差面积阈值。本发明的基于室温标定的梯度计等效误差面积校正方法及系统实现了对梯度计等效误差面积的有效校正;能够在室温下提高梯度计的平衡度,可操控性高。
-
公开(公告)号:CN103675744B
公开(公告)日:2016-04-13
申请号:CN201310694313.7
申请日:2013-12-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R35/00
Abstract: 本发明提供一种超导量子干涉传感器的标定设备及标定方法。所述标定设备包括:在三个正交的维度方向设置线圈,各所述线圈所围空间中的磁场均匀区域用于放置所述超导量子干涉传感器;与每个维度方向的线圈相连的信号发生器,用于向各所述线圈输出驱动电流,以使各所述线圈产生电压;与所述超导量子干涉传感器和所述信号发生器相连的标定分析装置,用于根据每个维度方向的线圈的电压及所述超导量子干涉传感器所输出的感应信号来标定所述超导量子干涉传感器的磁场电压转换系数。基于三维投影原理,有效地避免了传统单一方向标定带来的方向和位置校准问题。
-
公开(公告)号:CN103151245B
公开(公告)日:2016-02-17
申请号:CN201310103325.8
申请日:2013-03-28
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L21/02
Abstract: 本发明提供一种薄膜图形化方法,该方法至少包括以下步骤:提供一非金属衬底,并在该非金属衬底上形成光刻胶;进行光学曝光,将预设图形转移至该光刻胶上;在步骤2)之后获得的结构上沉积金属层;然后去除光刻胶并剥离,获得所需金属图形结构;在上述金属图形结构表面沉积薄膜材料,形成薄膜;最后去除剩余金属层得到图形化薄膜。本发明利用通常的图形化技术,实现金属的图形化,再以金属为掩膜板,在衬底上直接沉积高温生长的薄膜材料,该发明即沿用了传统的图形化技术,又克服了光刻胶在高温下无法做掩膜板使用的弊端;与离子束刻蚀方法相比,本发明工艺简单,易于操作,且花费较低。
-
公开(公告)号:CN105278396A
公开(公告)日:2016-01-27
申请号:CN201410352806.7
申请日:2014-07-23
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G05B19/042 , G01R35/00
Abstract: 本发明提供一种大量程SQUID磁传感器的工作点跳变控制方法及系统,该方法包括:当大量程SQUID磁传感器的FLL的输出电压幅度达到上限电压幅度时,输出一控制信号至FLL的复位控制端,使FLL开始复位;当大量程SQUID磁传感器的FLL的输出电压幅度达到下限电压幅度时,解除控制信号,使FLL自然进入锁定状态。本发明通过两个门限电压判断和状态控制方法,实现了最优化的复位控制,既确保了工作点的准确切换,避免了复位失败产生误计数,又优化了复位和重锁定的过程,实现了切换过程时间最短,避免了传统复位过零和重锁定过程产生的过冲暂态问题。
-
公开(公告)号:CN104045076B
公开(公告)日:2016-01-20
申请号:CN201410023150.4
申请日:2014-01-17
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种氧化石墨烯量子点的制备方法,所述氧化石墨烯量子点的制备方法至少包括:将柠檬酸与浓硫酸混合,并在常压下使得所述柠檬酸和浓硫酸进行反应,形成氧化石墨烯量子点溶液。本发明的氧化石墨烯量子点的制备方法具有工艺简单,原料容易获得,工艺条件易于实现,耗时短等优点。
-
公开(公告)号:CN105203978A
公开(公告)日:2015-12-30
申请号:CN201410242689.9
申请日:2014-06-03
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种SQUID磁传感器的失锁复位补偿装置及方法,该装置包括:参考SQUID磁传感器,包括第二SQUID器件,第二反馈线圈,及第二读出电路;第二SQUID器件与SQUID磁传感器共用一个信号输入线圈,与信号输入线圈的耦合度低于SQUID磁传感器中SQUID器件与信号输入线圈的耦合度;第二反馈线圈和第二读出电路将第二SQUID器件感应到的磁通转换成第二电压信号;失锁补偿模块根据失锁前后第一SQUID磁传感器的工作点相差整数个磁通量子Φ0的特性,利用第二电压信号的变化量获得第一SQUID磁传感器失锁前后工作点的偏移量,从而将失锁后第一SQUID磁传感器的工作点补偿到与失锁前一致。本发明实现了SQUID磁传感器在失锁复位前后的连续测量,实现了SQUID磁传感器既具有高灵敏度又具有大量程的特性。
-
公开(公告)号:CN104345758B
公开(公告)日:2015-12-02
申请号:CN201310320906.7
申请日:2013-07-26
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G05F1/56
Abstract: 本发明提供一种超导量子干涉器件偏置放大电路,包括:超导量子干涉器件;前置放大器,与超导量子干涉器件相连;电流调节电路,在超导量子干涉器件处于恒流偏置模式下时调节超导量子干涉器件的偏置电流;电压调节电路,在超导量子干涉器件处于恒压偏置模式下时调节加载在超导量子干涉器件的偏置电压;切换开关,通过切换控制超导量子干涉器件、电压调节电路与前置放大器的正向输入端和负向输入端的对应连接使超导量子干涉器件处于恒流偏置模式下或处于恒压偏置模式下;反馈电阻,一端与前置放大器的输出端相连,另一端与前置放大器的负向输入端相连。本发明电路简单,并通过一个切换开关控制前置放大器输入端切换来构成不同偏置工作模式。
-
公开(公告)号:CN105093093A
公开(公告)日:2015-11-25
申请号:CN201510423278.4
申请日:2015-07-17
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: G01R31/28
Abstract: 本发明提供一种SQUID芯片,包括:SQUID器件;并联的反馈线圈和加热器。所述反馈线圈工作于超导状态时,所述加热器不工作,所述SQUID器件对磁通信号进行检测并转化为电压信号输出;所述反馈线圈工作于失超状态时,所述加热器开始加热,使所述SQUID器件的工作温度升高,当所述SQUID器件的温度超过超导临界温度时,所述SQUID器件失超。所述SQUID芯片与传感电路相连形成SQUID磁传感器。本发明将传统SQUID芯片中的加热电阻和反馈线圈并联,并通过参数匹配,使加热电阻和反馈线圈配合工作,实现双功能运行,减少了常温电路和低温电路的金属引线数,将大大降低低温损耗,节约成本,提高低温环境维持的时间,增加系统运行时间,具有重要的经济和应用价值。
-
-
-
-
-
-
-
-
-