-
公开(公告)号:CN105160251A
公开(公告)日:2015-12-16
申请号:CN201510390821.5
申请日:2015-07-06
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F21/56
CPC classification number: G06F21/563 , G06F2221/033
Abstract: 本发明公开了一种APK应用软件行为的分析方法及装置,其中,该方法包括:接收用户上传的APK文件及体验数据,其中,体验数据为用户在APK文件对应的应用软件下的基础用户信息;使用体验数据在沙盒中动态运行对APK文件,并记录运行过程中APK文件的动态行为,以构建动态行为集;对APK文件进行静态分析,以构建静态行为集;根据动态行为集和静态行为集对APK文件进行综合分析,以确认APK文件的安全性能。通过运用本发明,解决了现有技术中的软件安全管理,都是在软件运行过程中进行监测,一旦发现问题对其进行记录及阻止,由于现有应用软件的复杂多样,目前的监测方式无法完全阻止非法应用软件窃取用户隐私及乱扣费等操作,用户体验较低的问题。
-
公开(公告)号:CN119598054A
公开(公告)日:2025-03-11
申请号:CN202510143768.2
申请日:2025-02-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/958 , G06V30/19
Abstract: 本发明涉及人工智能技术领域,提供一种网站类型识别方法、装置、电子设备和存储介质,其中方法包括:获取待识别网站的网址,并基于所述待识别网站的网址,获取所述待识别网站内所有的待分类图像;基于特征提取模型,对各待分类图像进行特征提取,得到所述各待分类图像的图像特征;基于文本特征库中的各文本特征和所述各待分类图像的图像特征,确定所述各待分类图像的类别;基于所述各待分类图像的类别,确定所述待识别网站的类型。本发明通过结合图像特征和文本特征,实现了基于图像和文本描述的多模态特征的检索式分类判断,可以有效提高网站类型识别的准确率。
-
公开(公告)号:CN118520929B
公开(公告)日:2024-10-29
申请号:CN202411003497.2
申请日:2024-07-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06N3/09 , G06N3/0455 , G06F40/194
Abstract: 本发明提供一种文本相似度确定模型的训练方法及文本相似度计算方法,属于计算机技术领域,该训练方法包括:获取第一数据集和第二数据集;第一数据集中包括至少一个短文本数据对;第二数据集中包括至少一个目标文本数据对,目标文本数据对中的两个目标文本数据至少一个为长文本数据;基于句向量对比模型,获取第二数据集中各目标文本数据的关键表述;句向量对比模型是基于第一数据集和第一损失函数对第一预训练模型训练得到的;基于各关键表述和第二损失函数,对第二预训练模型进行训练,得到文本相似性确定模型。通过在判定过程中引入短文本和长文本,提升了文本相似度确定模型输出结果的准确性。
-
公开(公告)号:CN115080871B
公开(公告)日:2024-05-17
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
公开(公告)号:CN117251524A
公开(公告)日:2023-12-19
申请号:CN202310446513.4
申请日:2023-04-24
Applicant: 国家计算机网络与信息安全管理中心 , 讯飞智元信息科技有限公司
IPC: G06F16/33 , G06F16/35 , G06F40/289 , G06F40/30 , G06F18/2431 , G06F18/2415 , G06F18/214 , G06N3/0455 , G06N3/0464 , G06N3/047 , G06N3/084
Abstract: 本发明公开了一种基于多策略融合的短文本分类方法,属于自然语言处理领域,主要涉及深度神经网络、数据增强以及文本分类。该方法包括如下步骤:通过数据预处理剔除噪声数据、基于词性标注关键词进行分类,基于数据增强的文本分类,最终通过多策略融合设置相应的阈值门限获取网络短文本数据标签。本发明通过提出一种基于多策略融合的短文本分类的解决方法,从而提升短文本数据分类的效果,进而提升业务人员发现相关短文本数据精准度和业务效率。
-
公开(公告)号:CN116684127A
公开(公告)日:2023-09-01
申请号:CN202310579956.0
申请日:2023-05-23
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种面向网络安全可解释网络数据标记方法、系统、计算设备,所述方法包括:模拟器对每一种网络攻击进行模拟,通过抓包操作获得对应的网络数据包,并在此基础上对数据进行聚类操作获得最终数据集;异常检测器对所述最终数据集的网络流量特征信息和解释器提供的部分解释结果进行统一建模,在每次与网络分析人员的交互中,确定一个可疑流量;解释器基于最大线性分离对当前所检测出可疑流量进行解释,并且向网络分析人员查询判断其是否为异常流量。本发明的优点是:充分利用解释器的计算资源,并使异常检测器可以与网络分析人员进行交互,其中通过解释器确保交互质量,最终使异常检测器模型具有适应动态网络环境的能力。
-
公开(公告)号:CN116595316A
公开(公告)日:2023-08-15
申请号:CN202310430301.7
申请日:2023-04-20
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/10 , G06F18/22 , G06F18/214 , G06F16/9035 , G06F16/951 , G06F16/9537 , G06F16/9538 , G06F16/9535 , G06F16/9038
Abstract: 本发明提出了一种基于评分卡模型的多平台虚假信息识别方法及装置,方法包括:获取各自表征一主题的多组数据信息;基于数据信息与预先标记的数据信息的比对情况进行筛选;对当前数据信息进行排序以及填充处理;利用当前数据信息,构建评分卡模型,并确认每一主题对应的数据信息中,各个维度信息对数据信息危险程度的影响情况;利用当前构建的评分卡模型,对再次获取的表征一主题的数据信息进行识别处理。本发明应用评分卡模型,可基于同一主题的虚假信息识别,并且可以根据影响主题信息的多种因素,在不同的周期内,识别不同维度数据的影响因素权重。
-
公开(公告)号:CN116561599A
公开(公告)日:2023-08-08
申请号:CN202310538213.9
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F17/16 , G06F18/25 , G06N3/0464 , G06N3/084
Abstract: 本发明涉及社交网络技术领域,尤其为基于少样本几何深度学习的用户重识别系统及方法,包括:生成排序模块:用于生成候选实体,并对候选实体进行相应排序;向量转化模块:用于通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示;深度训练模块:用于使用几何深度学习对所有的用户属性、内容、关系进行训练;身份重识别模块:用于计算两个实体之间的相似度,进行用户身份的重识别。本发明通过使用少样本几何深度学习实现用户身份重识别,通过图卷积的方式将待链接实体和候选实体转换成含有语义信息的向量表示,生成了有用的实体嵌入,并通过深度学习网络对所有的用户属性、内容、关系进行学习输出,获得更为准确的用户身份重识别信息。
-
公开(公告)号:CN111143553B
公开(公告)日:2023-04-07
申请号:CN201911244895.2
申请日:2019-12-06
Applicant: 国家计算机网络与信息安全管理中心 , 中国科学院计算技术研究所
IPC: G06F16/35 , G06F18/2415 , G06N3/045 , G06N3/09 , G06N3/047
Abstract: 本发明提出一种实时文本数据流的特定信息识别方法及系统。本发明主要解决的问题是针对海量实时文本数据流实现领域关注的特定信息识别。本发明提出一种针对海量实时文本数据流的特定信息识别框架及系统,侧重于具有海量性、实时性、多样化和复杂性特点的社交文本特定信息识别,并且实现能够适用于生产环境的社交大数据在线实时分析系统。本发明的目的在于根据互联网环境及手机短信网络环境下海量文本数据流,识别出文本中隐含的特定信息。
-
公开(公告)号:CN115034286A
公开(公告)日:2022-09-09
申请号:CN202210435266.3
申请日:2022-04-24
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于自适应损失函数的异常用户识别方法和装置,其中,该方法包括:获取web系统的用户行为日志数据样本,并将用户行为日志数据样本向量化,得到无标签数据样本和有标签数据样本;进行数据预处理得到训练数据集;基于训练数据集的输入特征训练第一自编码器模型,并基于第一自编码器模型构造无标签数据样本损失函数和有标签数据样本损失函数;迭代优化第一自编码器模型并构造异常用户检测优化问题函数,得到第二自编码器模型;基于第二自编码器模型,对无标签数据样本进行异常点检测,以识别异常用户。本发明解决实际业务场景中,无标签数据中存在异常点,采用固定损失函数难以提高准确率,误报率高的技术问题。
-
-
-
-
-
-
-
-
-