-
公开(公告)号:CN110659513A
公开(公告)日:2020-01-07
申请号:CN201910933708.5
申请日:2019-09-29
Applicant: 哈尔滨工程大学
IPC: G06F21/62
Abstract: 本发明公开了一种面向多敏感属性数据发布的匿名隐私保护方法。步骤1:计算原始数据表中各属性间的相关性,定义属性类别;步骤2:根据属性间的相关性,将所有属性进行分组;步骤3:将每个分组按照属性间相关性大小,由高到低排序;步骤4:计算每组内,敏感属性值出现频率,判断属性值是否需要保护;步骤5:将需要保护的敏感属性值及其关联属性与无需保护的敏感属性值进行交换;步骤6:对相关属性进行频繁项集挖掘;步骤7:使用聚类技术生成匿名等价组,匿名等价组内每个敏感属性满足L多样性。本发明通过降低匿名率,关联属性共同置换,在保证隐私保护强度的同时,提高数据的可用性。
-
公开(公告)号:CN118965858A
公开(公告)日:2024-11-15
申请号:CN202410914212.4
申请日:2024-07-09
Applicant: 哈尔滨工程大学
IPC: G06F30/23 , G06F30/28 , G06T17/20 , B63B71/10 , G06F113/08 , G06F119/14
Abstract: 本发明提出一种船舶流体CAE网格划分和三维可视化工具及方法,其中工具包括:船体表面混合网格生成模块、流体计算域非结构体网格生成模块、船体结构分析网格生成模块和船舶流体/结构仿真数据后处理模块;本发明中提出的各项技术研究成果,可以帮助工程师更快速、更准确地进行船舶水动力仿真计算、结构分析和数据可视化等工作,从而提高了船舶设计的效率和质量,通过使用本发明中提出的技术,船舶设计师可以更好地理解和分析船舶的性能特征,及时发现和解决潜在的问题,为船舶设计和改进提供了有力的技术支持,促进了船舶工程领域的技术创新和进步,推动相关技术的发展和应用,为船舶工程领域的发展注入新的活力和动力。
-
公开(公告)号:CN110602145B
公开(公告)日:2022-06-21
申请号:CN201910940865.9
申请日:2019-09-30
Applicant: 哈尔滨工程大学
IPC: H04L9/40 , H04L67/1396 , H04L67/52
Abstract: 本发明公开了一种基于位置服务的轨迹隐私保护方法。步骤1:根据用户的真实位置location生成模糊区域BA;步骤2:用模糊区域BA替代用户真实位置location,从多个匿名器中随机选择一个匿名服务器,向其发送查询请求(id,BA,t,query,k);步骤3:匿名服务器收到步骤2发送的请求信息后,在模糊区域BA内根据路网选择一个位置点Li;步骤4:匿名服务器根据步骤3中产生的Li生成匿名查询请求;步骤5:向位置服务提供商发送匿名查询请求。本发明基于多匿名器系统结构隐私保护模型进行实时轨迹隐私保护方法的研究,提出将位置模糊和K‑匿名相结合的方法,以达到增强轨迹隐私保护同时保证数据可用性的目的。
-
公开(公告)号:CN110442800B
公开(公告)日:2022-05-20
申请号:CN201910659962.0
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F16/9536
Abstract: 一种融合节点属性和图结构的半监督社区发现方法,属于网络分析技术领域。包括以下步骤:1)计算m个属性的信息熵;2)计算属性相似度;3)利用Jaccard相似度计算结构相似度;4)计算属性和结构总的相似度;5)寻找K个初始社区;6)初始化初始社区矩阵;7)结合半监督方法计算出社区划分矩阵;8)计算平衡值(trade‑off)分析参数的合理取值范围9)根据trade‑off和模块度获得最优的模块度及社区发现结果。本发明通过不断调节算法中涉及的参数来得到一种合理地划分方式,并最后给出对于社区发现最优结果以及算法参数合理范围;融合属性进行社区发现,给出了属性所占比例的合理范围,社区发现模块度和紧密度得到提高。
-
公开(公告)号:CN111814956B
公开(公告)日:2022-04-08
申请号:CN202010581735.3
申请日:2020-06-23
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种基于多维度二次特征提取的多任务学习的空气质量预测方法,所述方法包括获取数据、数据预处理、选取污染物、建立多维度二次特征提取的卷积神经网络模型和长短期记忆网络模型、建立多维度二次特征提取的多任务学习模型和验证步骤。本发明针对传统时空数据建模时仅考虑时间内部相关性和空间内部相关性,未考虑到时空之间的相关性的问题。本发明从空间、时间和时空三个角度考虑与污染物值相关的影响信息,通过多任务学习对多个时间、空间任务间的相互影响的学习来降低预测偏差,使得时间、空间模型的预测精度更准确。
-
公开(公告)号:CN113779298A
公开(公告)日:2021-12-10
申请号:CN202111085818.4
申请日:2021-09-16
Applicant: 哈尔滨工程大学
IPC: G06F16/583 , G06F16/55 , G06N3/04 , G06N3/08 , G16H30/40
Abstract: 本发明属于医学影像和人工智能交叉技术领域,具体涉及一种基于复合损失的医学视觉问答方法。本发明针对大多医学视觉问答专注于视觉内容而忽略了文本重要性的问题,在对图像和问题提取特征后采用多视角注意力机制将问题与图像和单词相关联,并采用分类损失和图像问题互补损失共同训练整个模型,补偿了现有的大多数医学视觉问答方法忽略了挖掘文本信息重要性的问题,实现了多角度对问题的关注,从而提高医学视觉问答方法的有效性。本发明可以有效解决医学视觉问答任务。
-
公开(公告)号:CN111814956A
公开(公告)日:2020-10-23
申请号:CN202010581735.3
申请日:2020-06-23
Applicant: 哈尔滨工程大学
Abstract: 本发明提出一种基于多维度二次特征提取的多任务学习的空气质量预测方法,所述方法包括获取数据、数据预处理、选取污染物、建立多维度二次特征提取的卷积神经网络模型和长短期记忆网络模型、建立多维度二次特征提取的多任务学习模型和验证步骤。本发明针对传统时空数据建模时仅考虑时间内部相关性和空间内部相关性,未考虑到时空之间的相关性的问题。本发明从空间、时间和时空三个角度考虑与污染物值相关的影响信息,通过多任务学习对多个时间、空间任务间的相互影响的学习来降低预测偏差,使得时间、空间模型的预测精度更准确。
-
公开(公告)号:CN110489804A
公开(公告)日:2019-11-22
申请号:CN201910659827.6
申请日:2019-07-22
Applicant: 哈尔滨工程大学
IPC: G06F17/50
Abstract: 本发明公开了一种单位圆盘图上的最大独立集近似求解方法,包括以下步骤:步骤1:利用动态规划方法设计一种单位圆盘顶点的相邻顶点集诱导子图的最大顶点独立集的最优解求解方法,并给出任意两顶点相邻顶点集并集诱导子图的最大顶点独立集的最优解;步骤2:针对一般的单位圆盘图,首先计算顶点支配独立集;之后对顶点支配独立集中成员进行单独检查,判断结果是否可优化,得到中间解;最后对中间解中成员进行联合检查,判断结果是否可优化,得到最终解。本发明以O(Δ2n3)的计算时间复杂度得到近似比为1.5的近似解,其中Δ为顶点最大度,相比单位圆盘图上最大独立集求解问题的现有近似算法,本发明提高了近似比,具有更高的效率。
-
-
-
-
-
-
-