-
公开(公告)号:CN117592527A
公开(公告)日:2024-02-23
申请号:CN202410074807.3
申请日:2024-01-18
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/0499 , G06N3/084 , G06F18/214 , G06F21/60
Abstract: 本发明公开了一种基于函数秘密共享的隐私保护神经网络训练方法及装置,来支持实用的安全神经网络训练,该框架具有较小的常数轮在线通信复杂度,在不降低模型精度的情况下降低离线通信成本,同时离线阶段通过使用安全两方计算友好的伪随机生成器,采用分布式比较函数密钥生成方案来取代可信第三方。本发明通过提出了具有最小密钥大小的通信优化的分布式比较函数,无需较大函数秘密共享密钥量;通过设计离线阶段,在离线阶段生成相关随机性用于在线阶段函数计算,使得在线阶段只需1轮通信即可,从而大大减少通信量。
-
公开(公告)号:CN116246698A
公开(公告)日:2023-06-09
申请号:CN202211090606.X
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F40/30 , G06N3/0464
Abstract: 本发明公开了一种基于神经网络的信息提取方法、装置、设备及存储介质,属于生物信息技术领域,该方法包括:本发明从预先获得的metapath实例中提取语义信息;基于注意力聚合机制对所述语义信息进行编码,获得语义注意力系数,基于所述语义注意力系数聚合邻居节点;通过非线性神经网络对所述语义信息进行学习,获得二次语义信息,将二次语义信息聚合至所述邻居节点中,获得节点嵌入;通过非线性神经网络融合多个metapath下的所述节点嵌入,获得最终节点表示。如此通过非线性神经网络二次提取metapath实例中的语义信息,充分利用了各个节点的语义信息,提升了信息提取的效果。
-
公开(公告)号:CN115577273A
公开(公告)日:2023-01-06
申请号:CN202210970095.4
申请日:2022-08-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本申请公开了一种基于对比学习的单细胞数据聚类方法、装置、设备及存储介质,该方法包括:通过预先构建的特征提取模块确定待聚类单细胞数据的正视图对并提取所述正视图对的特征;通过预先构建的对比学习模型将所述特征进行对比学习,获得所述待聚类单细胞数据的高阶表示,并对所述高阶表示进行聚类分析以获得所述待聚类单细胞数据的聚类分析结果。如此,通过特征提取、对比学习获得了待聚类单细胞数据的高阶表示,解决了当前单细胞测序数据高维稀疏、种群间不平衡以及测序过程经常发生drop‑out事件的问题。
-
公开(公告)号:CN114418098A
公开(公告)日:2022-04-29
申请号:CN202210255131.9
申请日:2022-03-16
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供一种神经网络差量压缩方法、装置、电子设备及存储介质,该方法在获取到神经网络的两个相邻训练版本时,可为这些版本所包含的各网络层生成专用的量化参数,并利用这些量化参数为对应的网络层进行浮点参数量化处理,得到训练版本对应的整数版本,再利用这些整数版本替代训练版本进行差量数据计算及差量压缩。换而言之,本发明为神经网络模型的每一网络层设置了生成的专用的量化参数,可采用不同力度对每一网络层进行针对性量化,相较于全局量化策略额外考虑了神经网络模型不同网络层之间的参数取值差异,能够有效避免将整个网络的浮点数参数看作一个集合来确定全局的量化参数所导致的量化误差增大及模型的精度下降问题。
-
公开(公告)号:CN116246699B
公开(公告)日:2024-04-26
申请号:CN202211105940.8
申请日:2022-09-07
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G16B20/00 , G16B40/00 , G06F16/36 , G06N3/0464
Abstract: 本发明公开了一种基于知识图谱的合成致死预测方法、设备及存储介质,该方法包括:基于知识图谱卷积网络获得第一基因特征;根据合成致死相互作用网络获得第二基因特征;计算所述第一基因特征和所述第二基因特征的向量内积,预测基因对的合成致死概率。由此解决了当前需要人工设计基因特征,以及无法通过建模合成致死相互作用背后机制的问题,在提升基因对的合成致死预测性能的同时,还提高了模型的可解释性。
-
公开(公告)号:CN113052203B
公开(公告)日:2022-01-18
申请号:CN202110181592.1
申请日:2021-02-09
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明公开了一种面向多种类数据的异常检测方法及装置。所述面向多种类数据的异常检测方法通过训练对抗学习网络,使对抗学习网络中的生成器拟合正常训练样本的分布以及学习正常训练样本的潜在模式,得到更新的对抗学习网络,根据训练过程中产生的重构误差构造更新的对抗学习网络中的异常评价函数,并将更新的对抗学习网络构建为异常检测模型,以利用异常检测模型对输入的检测数据进行异常检测,得到异常检测结果。本发明基于传统生成对抗学习模型的异常检测方法,通过引入模式分类器的思想,有效解决了检测数据与正常数据分布相近时异常检测难的问题,进一步提高了异常检测的准确性。
-
公开(公告)号:CN111291890B
公开(公告)日:2021-01-01
申请号:CN202010399728.1
申请日:2020-05-13
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种博弈策略优化方法、系统及存储介质,该博弈策略优化方法包括建立基于最大熵的策略递度算法步骤和多智能体最优反应策略求解步骤。本发明的有益效果是:本发明采用中心化训练和分散式执行的方式,提高动作估值网络的准确性,同时引入了全局基线奖励来更准确地衡量智能体的动作收益,以此来解决人博弈中的信用分配问题。同时引入了最大熵方法来进行策略评估,平衡了策略优化过程中的探索与利用。
-
公开(公告)号:CN111260040A
公开(公告)日:2020-06-09
申请号:CN202010370070.1
申请日:2020-05-06
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
Abstract: 本发明提供了一种基于内在奖励的视频游戏决策方法,包括以下步骤:S1、获取视频游戏模拟环境;S2、构建神经网络模型;S3、设计内在奖励模型;S4、将内在奖励模型与构建的神经网络模型结构结合;S5、通过模拟环境获取游戏的记录;S6、通过获取的游戏记录,更新神经网络模型;S7、循环训练神经网络模型直至收敛。本发明的有益效果是:较好的解决了三维场景中较为常见的缺乏环境反馈奖励值的问题。
-
公开(公告)号:CN221143142U
公开(公告)日:2024-06-14
申请号:CN202323098421.6
申请日:2023-11-16
Applicant: 深圳市体育中心运营管理有限公司 , 中国建筑第八工程局有限公司 , 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院) , 上海建科工程咨询有限公司
Abstract: 本实用新型公开一种半刚性连接的耗能缓冲装置,耗能缓冲装置包括缓冲器组件、半刚性连接组件、耗能组件和底板,缓冲器组件和底板之间通过半刚性连接组件连接,耗能组件设置在缓冲器组件和底板之间。采用本实用新型可提升开合屋盖应对突发情况的能力,提高突发情况下屋盖结构的安全性。通过在缓冲器中引入半刚性连接和耗能组件,保证即使在突发情况下,屋盖主体结构的安全也不会受到威胁,从而提高了开合屋盖结构的整体安全性。而且,本实用新型修复工作简单、便捷。在突发情况发生后,只需更换缓冲装置中的连接组件,不需要对开合屋盖的主体结构进行修复。
-
公开(公告)号:CN110101849B
公开(公告)日:2023-11-10
申请号:CN201910292775.3
申请日:2019-04-12
Applicant: 暨南大学
IPC: A61K38/44 , A61K9/12 , A61K9/72 , A61P39/02 , A61P1/16 , A61P13/12 , A23L33/00 , A61K31/095 , A61K31/4164 , A61K31/385 , A61K31/185 , A61K31/198 , A61K31/197 , A61K31/7084
Abstract: 本发明提供了一种酶催化解酒作用的组合物及其制备方法与应用,所述的组合物包括1~10份乙醇脱氢酶、1~10份乙醛脱氢酶、1~10份乙醇脱氢酶激动剂、1~10份乙醛脱氢酶激动剂、0~10份乙醇脱氢酶和乙醛脱氢酶的共同辅基,组方全面,可显著提升酶的活性,并提升解酒效果,所述的激动剂同时还具有护肝作用。本发明的组合物可应用于酶催化解酒剂的制备,可有效、迅速缓解醉酒。同时,本发明还对所述组合物的剂型和给药方式进行了有益改进,例如,通过雾化吸入使药物能够通过呼吸道作用于患者,达到迅速缓解醉酒的效果,使用场景更广、更方便。本发明的产品生物利用度高、质量稳定、生产工艺简单,并且适用面广、使用方便、易于推广。
-
-
-
-
-
-
-
-
-