一种空间环境模型的表征方法

    公开(公告)号:CN115203920A

    公开(公告)日:2022-10-18

    申请号:CN202210768380.8

    申请日:2022-06-30

    Abstract: 本发明提供一种空间环境模型的表征方法,包括:接收任务开始时间、任务结束时间和仿真步长;分别对飞行器模型中的多个轨道计算模型以及多个空间环境模型的参数进行初始化;根据任务开始时间、任务结束时间以及仿真步长,获取仿真时刻,再通过仿真时刻,分别获取每个仿真时刻中飞行器的空间位置数据及每个飞行器在每个空间环境模型下的空间环境量化表征数据;对飞行器在不同所述空间环境模型下的空间环境量化表征数据进行对比分析。本发明提供的空间环境模型的表征方法能够对不同空间环境模型的优劣进行对比,并得到空间环境模型的准确性、适用性和覆盖性等信息,为空间环境模型的工程应用提供重要依据。

    实时计算卫星在轨运行环境辐射效应的方法

    公开(公告)号:CN115203915A

    公开(公告)日:2022-10-18

    申请号:CN202210762502.2

    申请日:2022-06-30

    Abstract: 本发明提供了一种实时计算卫星在轨运行环境辐射效应的方法,属于卫星空间环境分析技术领域。方法包括:S1、在环境求解器中导入轨道环境文件,获取相应参数;S2、选取轨道环境文件中时间段N、粒子类型以及飞行器,设置最小累计辐射模拟计算时间k,对k时间内粒子通量进行积分,生成能谱文件,能谱文件个数为N/k个;S3、设置分析参数、运行粒子数,选取目标结构,依据能谱文件,生成相应的脚本文件,将脚本文件输入求解器依次求解;S4、对求解结果进行求和以及归一化处理,生成最终结果。本发明可以实时模拟计算在不同轨道环境下航天器运行任意时段内所受到不同类型辐射粒子对其辐射损伤程度,且本发明支持多求解器同时计算大大提高了计算效率。

    飞行器紫外辐照表征方法、装置、计算机设备及存储介质

    公开(公告)号:CN115186467A

    公开(公告)日:2022-10-14

    申请号:CN202210769884.1

    申请日:2022-06-30

    Abstract: 本发明提供了一种飞行器紫外辐照表征方法、装置、计算机设备及存储介质,所述方法包括:获取当前时刻飞行器的运动状态和运行姿态、太阳光线的方向;根据所述飞行器的运动状态以及所述太阳光线的方向,判断所述飞行器是否受紫外辐照;当所述飞行器受到紫外辐照时,根据所述太阳光线的方向以及所述飞行器的姿态,对所述飞行器不同受晒面的紫外辐照情况进行分析。本发明通过获取飞行器的运动状态、姿态状态以及获取太阳光线的方向,对飞行器表面不同部位受到的不同程度的紫外辐射进行表征,考虑了不同飞行器的结构及受晒面,较为真实地实现对飞行器在轨运行期间的紫外辐照进行实时量化表征。

    计算单机内部深度-剂量曲线的方法

    公开(公告)号:CN115186465A

    公开(公告)日:2022-10-14

    申请号:CN202210768685.9

    申请日:2022-06-30

    Abstract: 本发明提供了一种计算单机内部深度‑剂量曲线的方法,属于空间环境分析技术领域。方法包括:S1、计算输入的深度‑剂量曲线,选取所要分析的空心的单机壳体;S2、进行射线跟踪分析,获取每一个扇形区域的屏蔽深度值;S3、将每一个扇形区域的屏蔽深度值与输入的深度‑剂量曲线的屏蔽深度值进行加和,之后依据加和的屏蔽深度值计算出对应的剂量值,以输入的深度‑剂量曲线的屏蔽深度值和依据加和的屏蔽深度值计算得到的剂量值构建输出的深度‑剂量曲线;S4、根据每一个扇形区域的权重对输出的深度‑剂量曲线进行累加,构建单机内部的深度‑剂量曲线。本发明实现了高效、精确地将外部环境的深度‑剂量曲线转化为单机壳体的深度‑剂量曲线。

    不同能量入射粒子辐照器件的缺陷演化仿真方法及系统

    公开(公告)号:CN115146458A

    公开(公告)日:2022-10-04

    申请号:CN202210762698.5

    申请日:2022-06-30

    Abstract: 本发明提供了一种不同能量入射粒子辐照器件的缺陷演化仿真方法及系统,属于模拟仿真技术领域。所述方法包括:获取入射粒子辐射器件后产生的PKA的信息,对所述器件进行网格化处理,并获取每个网格中的所述PKA的信息;建模;利用分子动力学模拟方法进行PKA在器件中级联碰撞的微观损伤过程模拟;利用动力学蒙特卡罗方法进行缺陷演化模拟;S5,改变所述入射粒子的能量数值,重复上述步骤,获取不同入射粒子能量与所述器件中缺陷信息之间的关系。本发明采用不同模拟方法分别覆盖不同的时间尺度,模拟计算更为精确,模拟过程与实际情况更为贴合,模拟结果与实验数据也较为贴合,且计算法方法逻辑清晰,步骤简单且易于操作。

    一种重离子辐照影响β-Ga2O3 MOSFET器件电学性能的模拟方法

    公开(公告)号:CN115128423A

    公开(公告)日:2022-09-30

    申请号:CN202210762660.8

    申请日:2022-06-30

    Abstract: 本发明提供一种重离子辐照影响β‑Ga2O3MOSFET器件电化学性能的方法,包括:将外延层中掺杂施主Si元素的β‑Ga2O3在室温条件下进行不同注量的重离子辐照;检测重离子辐照前后β‑Ga2O3外延晶片的单斜结构、弯曲振动、拉伸模式光学性质和化学结合状态;对步骤S2中得到的实验数据进行总结,得出重离子辐照β‑Ga2O3外延晶片后产生的点缺陷;将步骤S3中产生的点缺陷引入β‑Ga2O3MOSFET模型中,输出模拟电学性能曲线。本发明通过将β‑Ga2O3外延晶片的辐照研究与β‑Ga2O3MOSFET器件的模拟研究进行结合,对β‑Ga2O3MOSFET器件抗辐射机理研究产生了显著的效果。

    一种过渡金属硫化物非线性光学性质的调控方法及装置

    公开(公告)号:CN111883218A

    公开(公告)日:2020-11-03

    申请号:CN202010735168.2

    申请日:2020-07-28

    Abstract: 本发明提供了一种过渡金属硫化物非线性光学性质的调控方法及装置,方法包括:将过渡金属硫化物结构中的一个原子替换为标定原子,获得新的原子晶格;优化新的原子晶格的晶格参数,获得优化后的晶格参数;根据优化后的晶格参数依次进行自洽计算和非自洽计算,获得预处理后的晶格参数,根据预处理后的晶格参数确定电子带隙;根据预处理后的晶格参数进行非自洽计算,获得波函数,根据波函数进行GW-BSE计算,获得光学带隙;根据光学带隙和电子带隙确定带隙差,根据带隙差确定修正参数;根据修正参数和控制参数进行模拟,获得多个二阶非线性非零响应光谱。本申请的技术方案,提高了过渡金属硫化物的非线性光学性质,降低了计算模拟过程的复杂度。

    飞行器紫外辐照表征方法、装置、计算机设备及存储介质

    公开(公告)号:CN115186467B

    公开(公告)日:2025-04-29

    申请号:CN202210769884.1

    申请日:2022-06-30

    Abstract: 本发明提供了一种飞行器紫外辐照表征方法、装置、计算机设备及存储介质,所述方法包括:获取当前时刻飞行器的运动状态和运行姿态、太阳光线的方向;根据所述飞行器的运动状态以及所述太阳光线的方向,判断所述飞行器是否受紫外辐照;当所述飞行器受到紫外辐照时,根据所述太阳光线的方向以及所述飞行器的姿态,对所述飞行器不同受晒面的紫外辐照情况进行分析。本发明通过获取飞行器的运动状态、姿态状态以及获取太阳光线的方向,对飞行器表面不同部位受到的不同程度的紫外辐射进行表征,考虑了不同飞行器的结构及受晒面,较为真实地实现对飞行器在轨运行期间的紫外辐照进行实时量化表征。

    一种模拟声子辅助光致发光谱的方法

    公开(公告)号:CN115165814B

    公开(公告)日:2025-04-18

    申请号:CN202210759752.0

    申请日:2022-06-30

    Abstract: 本发明提供了一种模拟声子辅助光致发光谱的方法,涉及半导体材料的模拟技术技术领域,具体适用于固体材料,包括如下步骤:构建含有缺陷的晶胞模型,定义ABCD四种状态,同时计算基态系统位形状态A不同声子模式对应的声子基矢;通过杂化密度泛函自洽计算,获得各态势总能,构建位形图和ZPL能量;提取所述总能、声子基矢和原子质量,通过计算获得黄昆因子和光谱数据,将其导入绘图软件,得到光致发光谱。本发明所述的计算方法实现对固体材料声子辅助光致发光性质的精确模拟计算。

    一种过渡金属硫化物非线性光学性质的调控方法及装置

    公开(公告)号:CN111883218B

    公开(公告)日:2024-07-23

    申请号:CN202010735168.2

    申请日:2020-07-28

    Abstract: 本发明提供了一种过渡金属硫化物非线性光学性质的调控方法及装置,方法包括:将过渡金属硫化物结构中的一个原子替换为标定原子,获得新的原子晶格;优化新的原子晶格的晶格参数,获得优化后的晶格参数;根据优化后的晶格参数依次进行自洽计算和非自洽计算,获得预处理后的晶格参数,根据预处理后的晶格参数确定电子带隙;根据预处理后的晶格参数进行非自洽计算,获得波函数,根据波函数进行GW‑BSE计算,获得光学带隙;根据光学带隙和电子带隙确定带隙差,根据带隙差确定修正参数;根据修正参数和控制参数进行模拟,获得多个二阶非线性非零响应光谱。本申请的技术方案,提高了过渡金属硫化物的非线性光学性质,降低了计算模拟过程的复杂度。

Patent Agency Ranking