-
公开(公告)号:CN110188835B
公开(公告)日:2021-03-16
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask‑RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN106656578B
公开(公告)日:2019-10-18
申请号:CN201611055837.1
申请日:2016-11-25
Applicant: 北京邮电大学
IPC: H04L12/24
Abstract: 本发明提供一种基于最小堆的软件定义网络扩展方法,利用软件定义网络中控制器能获取网络拓扑结构的特点将全网构造成一个或多个最小堆;利用最小堆的插入算法可将新加入的网络节点与原有堆合并至一个堆,从而实现网络的扩展;利用最小堆的堆合并算法可将新加入的堆与原有堆合并至一个堆,从而实现网络的扩展。通过优化软件定义网络的数据结构,在网络扩展中采用最小堆,利用最小堆的特点可灵活的向网络中添加节点或多个节点形成的堆,并且基于最小堆优化的路由算法明显降低了时间复杂度。
-
公开(公告)号:CN110070073A
公开(公告)日:2019-07-30
申请号:CN201910373780.7
申请日:2019-05-07
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于注意力机制的全局特征和局部特征的行人再识别方法,包括:分别提取行人的全局特征和局部特征;在全局特征分支中,以整个行人特征图像作为输入,并将其送入空间注意力机制模块和通道注意力机制模块,将两个模块的特征表示进行融合;在局部特征分支中,把行人特征图水平平均分割为三部分,将分割的三部分输入到通道注意力机制模块得到每一部分的局部特征;将全局特征和局部特征送入特征向量提取模块,得到用于行人预测的特征向量;对整体网络进行训练,得到行人再识别模型。本发明充分利用行人图像的全局特征和局部特征,有效融合了注意力机制,使行人特征更具有判别力,获得了良好的行人再识别结果,提高了模型匹配准确率。
-
公开(公告)号:CN106595633B
公开(公告)日:2019-07-19
申请号:CN201611070529.6
申请日:2016-11-25
Applicant: 北京邮电大学
Abstract: 本发明提供一种室内定位方法及装置,属于室内定位技术领域。方法包括:根据多重传感器采集到的数据,预测行人的位置信息;基于室内运动模型,获取行人的室内运动状态;基于室内环境地图模型,根据室内运动状态及室内预设节点的位置信息,对预测得到的行人位置信息进行校准,得到行人的最终位置信息。本发明通过预测行人的位置信息。基于室内运动模型,获取行人的室内运动状态。基于室内环境地图模型,根据室内运动状态及室内预设节点的位置信息,对预测得到的行人位置信息进行校准,得到行人的最终位置信息。由于不用安装外部设备,从而在避免设计复杂度较高的系统的同时,还可减少硬件成本消耗,进而使得室内定位时耗费的成本较低。
-
公开(公告)号:CN109614853A
公开(公告)日:2019-04-12
申请号:CN201811273872.X
申请日:2018-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于身体结构划分的双线性行人再识别网络构建方法,包括以下步骤:对原始行人图像进行身体结构分块得到多个结构子框,将多个子框组合成新的行人图像,构造结构框预测子网络;设置加权的局部损失函数来训练该结构框预测子网络;构造两个子网络,分别以原始行人图像和重组后行人图像作为输入,对应地提取全局行人特征和局部行人特征;设置双线性融合层,并将其作为全局特征和局部特征的融合层,得到最终的行人特征表示;对整体网络进行训练,得到基于身体结构划分的双线性行人再识别模型。本发明结合整体特征和局部特征,充分利用了身体结构信息,通过双线性融合方法获得更具判别力的行人特征,使得系统整体匹配准确率大大提升。
-
公开(公告)号:CN107886116A
公开(公告)日:2018-04-06
申请号:CN201711033084.9
申请日:2017-10-30
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06K9/629 , G06K9/00369 , G06K9/4647 , G06K9/4652
Abstract: 本发明涉及一种针对视频数据行人再识别的LOMO3D特征提取方法,其技术特点是:将视频数据中的各帧分离出来,组织成图像序列的形式,并分割为一定长度的等长序列;将每个序列水平分割为若干扁平区域,并在这些区域中进一步划分子块,作为直方图统计的最小单位;对于每个子块,统计形成纹理直方图特征和HSV色域下的颜色直方图特征;将每个水平区域中的纹理和颜色直方图特征根据最大化原则进行整合并进行拼合,得到最终的LOMO3D特征描述子。本发明设计合理,充分利用了图像序列中的时空特征和时间信息,使得特征的描述能力性能远远高于单纯的空间域特征,试验表明本发明能够使得系统整体匹配率大大提升,优于目前其他的行人再识别算法。
-
公开(公告)号:CN107292915A
公开(公告)日:2017-10-24
申请号:CN201710450320.0
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于卷积神经网络的目标跟踪方法,其主要技术特点是:搭建适用于跟踪任务的卷积神经网络框架;在中心对比损失函数约束下对搭建好的卷积神经网络进行参数训练;将训练好的模型结构进行微调,进行在线跟踪。本发明设计合理,以卷积神经网络为结构基础,重点关注不同物体间的类内差异,能够较好地应对背景混杂以及相似目标干扰的情况,具有良好的鲁棒性和较高的精确度。
-
公开(公告)号:CN106656578A
公开(公告)日:2017-05-10
申请号:CN201611055837.1
申请日:2016-11-25
Applicant: 北京邮电大学
IPC: H04L12/24
Abstract: 本发明提供一种基于最小堆的软件定义网络扩展方法,利用软件定义网络中控制器能获取网络拓扑结构的特点将全网构造成一个或多个最小堆;利用最小堆的插入算法可将新加入的网络节点与原有堆合并至一个堆,从而实现网络的扩展;利用最小堆的堆合并算法可将新加入的堆与原有堆合并至一个堆,从而实现网络的扩展。通过优化软件定义网络的数据结构,在网络扩展中采用最小堆,利用最小堆的特点可灵活的向网络中添加节点或多个节点形成的堆,并且基于最小堆优化的路由算法明显降低了时间复杂度。
-
公开(公告)号:CN106643711A
公开(公告)日:2017-05-10
申请号:CN201611056649.0
申请日:2016-11-25
Applicant: 北京邮电大学
CPC classification number: G01C21/165 , G01C21/206
Abstract: 本发明提供一种基于手持设备的室内定位方法和系统,所述手持设备包括加速度传感器、陀螺仪以及地磁感应器,所述方法包括:S1、基于行人的步数、步长以及角位移获得行人的位置坐标;以及S2、基于室内的磁场地图对所述位置坐标进行定位校正。通过实际场地采集数据与MATLAB平台仿真的验证,本发明的方法可以实现稳定性强的、高精度的室内定位。
-
公开(公告)号:CN102622729B
公开(公告)日:2015-04-08
申请号:CN201210059658.0
申请日:2012-03-08
Applicant: 北京邮电大学
IPC: G06T5/00
Abstract: 本发明涉及一种基于模糊集合理论的空间自适应块匹配图像去噪方法,包括以下步骤:(1)设置初始相似块搜索窗口Δi,1的大小;(2)计算待处理像素i的图像块y(Ni)与搜索窗口Δi,1内像素j的图像块y(Nj)之间的方差归一化的对称距离;(3)根据图像块之间的距离利用模糊聚类分析计算图像块的相似程度并对搜索窗内的像素值进行加权平均得到待处理像素i的估计值(4)对残余噪声像素值进行修正;(5)增加相似块搜索窗口Δi,n的大小,并重复步骤(2)至步骤(4)直至满足迭代终止条件。本发明设计合理,通确保像素相似程度划分的有效性,提高估值的准确性,有效地提高了基于块的图像去噪方法的性能。
-
-
-
-
-
-
-
-
-