-
公开(公告)号:CN110188835B
公开(公告)日:2021-03-16
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask‑RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN110188835A
公开(公告)日:2019-08-30
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask-RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN110545416A
公开(公告)日:2019-12-06
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-
公开(公告)号:CN110781932A
公开(公告)日:2020-02-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN110781931A
公开(公告)日:2020-02-11
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110781932B
公开(公告)日:2022-03-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
IPC: G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN110781931B
公开(公告)日:2022-03-08
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110545416B
公开(公告)日:2020-10-16
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-
公开(公告)号:CN107679461A
公开(公告)日:2018-02-09
申请号:CN201710816499.7
申请日:2017-09-12
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明设计了一种基于对偶综合-解析字典学习的行人再识别方法,其主要技术特点是:从行人再识别数据中提取行人图像特征;采用局部Fisher判决分析方法将不同摄像机视角下的行人图像特征投影到公共特征空间;运用对偶综合-解析字典学习算法,在公共特征空间中学习对偶综合字典和对偶解析字典;建立行人匹配模型,并利用改进余弦公式进行行人距离计算。本发明设计合理,其通过在原始对偶综合字典学习中引入对偶解析字典,解析字典拥有判决能力,提高了综合字典的数据表示能力,使得字典能够更有效的表示数据的本征结构,获得了有效的再识别性能。
-
公开(公告)号:CN108846446B
公开(公告)日:2021-10-12
申请号:CN201810721733.2
申请日:2018-07-04
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于多路径密集特征融合全卷积网络的目标检测方法,利用深度卷积神经网络提取具有不同特征信息的分层多尺度特征图;利用自底向上的旁路连接进行自下而上的特征融合;利用自顶向下的密集旁路连接进行自上而下的密集特征融合;构建不同大小和长宽比的目标候选框;利用二分类器减少目标候选框中的简单背景样本,并利用多任务损失函数对二分类器、多类别分类器和边界框回归器进行联合优化。本发明基于深度卷积神经网络提取图像特征,利用多路径密集特征融合方法改善特征表达能力,构建了用于目标检测的全卷积网络,提出了减少冗余简单背景样本和多任务损失联合优化的策略,提高了算法的检测精度,获得了良好的目标检测结果。
-
-
-
-
-
-
-
-
-