-
公开(公告)号:CN110781932B
公开(公告)日:2022-03-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
IPC: G06V10/764 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN110188835B
公开(公告)日:2021-03-16
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask‑RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN110070073A
公开(公告)日:2019-07-30
申请号:CN201910373780.7
申请日:2019-05-07
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于注意力机制的全局特征和局部特征的行人再识别方法,包括:分别提取行人的全局特征和局部特征;在全局特征分支中,以整个行人特征图像作为输入,并将其送入空间注意力机制模块和通道注意力机制模块,将两个模块的特征表示进行融合;在局部特征分支中,把行人特征图水平平均分割为三部分,将分割的三部分输入到通道注意力机制模块得到每一部分的局部特征;将全局特征和局部特征送入特征向量提取模块,得到用于行人预测的特征向量;对整体网络进行训练,得到行人再识别模型。本发明充分利用行人图像的全局特征和局部特征,有效融合了注意力机制,使行人特征更具有判别力,获得了良好的行人再识别结果,提高了模型匹配准确率。
-
公开(公告)号:CN110781931B
公开(公告)日:2022-03-08
申请号:CN201910971337.X
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种局部特征提取和融合的超高清片源转换曲线检测方法,其技术特点是:构造局部特征提取和融合的超高清片源转换曲线检测网络,构建局部特征提取和融合层,得到用于表征转换曲线特性的局部特征图;使用残差网络作为初始网络,得到整体转换曲线检测网络模型;对曲线检测网络模型进行训练,转换曲线分类模型;将超高清片源图像输入到转换曲线分类模型中,由该转换曲线分类模型输出该图像属于三种转换曲线类别的概率,最终根据概率大小判别图像的转换曲线类别。本发明设计合理,其通过构建特征提取和融合的超高清片源转换曲线检测网络模型,优于目前其他的片源检测算法,系统整体检测准确率较高。
-
公开(公告)号:CN110545416B
公开(公告)日:2020-10-16
申请号:CN201910825906.X
申请日:2019-09-03
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种基于深度学习的超高清片源检测方法,其主要技术特点是:对超高清片源进行技术符合性检测;对视频文件封装格式进行检测;对码流文件进行检测;构造色域检测的卷积神经网络模型,对视频片源的色域进行检测;构造转换曲线检测的卷积神经网络模型,对视频片源的转换曲线进行检测。本发明设计合理,其通过检测文件格式封装信息,可检测到文件头中封装的相应信息是否符合技术标准,通过检测编码后的码流信息,可检测到码流中标识的相应信息是否正确,并在片源内容特征检测上有效结合了卷积神经网络模型,可检测视频内容实际的色域类别以及测视频内容实际的转换曲线类别,获得了优良的检测结果,使得系统整体检测准确率大大提高。
-
公开(公告)号:CN111669532A
公开(公告)日:2020-09-15
申请号:CN202010488758.X
申请日:2020-06-02
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种高动态范围视频端到端实现方法,其主要技术特点是:制作视频节目,得到HLG视频;对HLG视频进行编码,得到编码码流;编码码流经过不同的传输网络进行传输;接收端对接收到的传输码流进行解码处理,根据显示终端的显示能力,将HLG视频送至显示终端进行显示。本发明设计合理,其在现有基于HLG的超高清电视系统中,增加PQ动态元数据的提取和传输,如果是现有支持HLG视频的终端,直接显示;如果是支持PQ视频的终端,将HLG转换为PQ视频动态适配后显示,可以在不改变现有传输方式的基础上,实现不同显示终端的最佳还原显示功能。
-
公开(公告)号:CN110188835A
公开(公告)日:2019-08-30
申请号:CN201910483958.3
申请日:2019-06-05
Applicant: 国家广播电视总局广播电视科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于生成式对抗网络模型的数据增强行人再识别方法,包括使用Mask-RCNN图像分割算法分割出图像中行人的掩膜图像;结合掩膜图像和手工标注行人属性,训练一个端到端的改进星形生成式对抗网络,从一个摄像头下的真实行人图像生成任何数量摄像头下的假训练图像;使用训练好的改进星形生成式对抗网络生成所有真实图像对应的所有相机域的假训练图像;将真实图像和假训练图像一起送入行人再识别模型,计算行人图像间距离并完成行人再识别功能。本发明设计合理,利用生成式对抗网络生成更多的训练样本,同时生成的图像背景能够有效地表示相对应摄像头下的真实场景,有效提高行人再识别模型的鲁棒性和判决能力,有效提高了行人再识别的准确率。
-
公开(公告)号:CN111669532B
公开(公告)日:2021-08-10
申请号:CN202010488758.X
申请日:2020-06-02
Applicant: 国家广播电视总局广播电视科学研究院
Abstract: 本发明涉及一种高动态范围视频端到端实现方法,其主要技术特点是:制作视频节目,得到HLG视频;对HLG视频进行编码,得到编码码流;编码码流经过不同的传输网络进行传输;接收端对接收到的传输码流进行解码处理,根据显示终端的显示能力,将HLG视频送至显示终端进行显示。本发明设计合理,其在现有基于HLG的超高清电视系统中,增加PQ动态元数据的提取和传输,如果是现有支持HLG视频的终端,直接显示;如果是支持PQ视频的终端,将HLG转换为PQ视频动态适配后显示,可以在不改变现有传输方式的基础上,实现不同显示终端的最佳还原显示功能。
-
公开(公告)号:CN110781932A
公开(公告)日:2020-02-11
申请号:CN201910971340.1
申请日:2019-10-14
Applicant: 国家广播电视总局广播电视科学研究院 , 北京博雅睿视科技有限公司
Abstract: 本发明涉及一种多类别图像转换与对比的超高清片源色域检测方法,其技术特点是:构造多类别图像转换与对比的色域检测网络,用于对BT.709和BT.2020两种视频片源的色域进行检测;构建图像转换与对比层,对输入图像进行转换,增加不同类别特征间的参照和对比;使用残差网络作为初始网络,将原始输入图像和转换后的图像同时输入初始网络;对色域检测网络进行训练,得到BT.709和BT.2020两类别的色域分类模型,并由该色域分类模型图像的色域类别。本发明设计合理,对超高清视频片源的色域进行技术符合性检测,将色域检测问题归结为图像分类问题,并结合图像分类任务中的卷积神经网络,获得了很好的色域检测结果,使得系统整体检测准确率大大提升。
-
公开(公告)号:CN115474072A
公开(公告)日:2022-12-13
申请号:CN202211417449.9
申请日:2022-11-14
Applicant: 国家广播电视总局广播电视科学研究院 , 中国广播电视网络集团有限公司 , 东方有线网络有限公司
IPC: H04N21/2187 , H04N21/234 , H04N21/239 , H04N21/466
Abstract: 本申请实施例提供了面向多个终端设备的内容协同分发处理方法、装置及设备,该方法包括:接收视频播放请求;响应于所述视频播放请求,向第一终端设备提供目标视频;在第一终端设备播放所述目标视频的过程中,向第二终端设备提供目标关联内容,所述目标关联内容为与所述目标视频存在关联关系的内容。
-
-
-
-
-
-
-
-
-