基于注意力机制的全局特征和局部特征的行人再识别方法

    公开(公告)号:CN110070073A

    公开(公告)日:2019-07-30

    申请号:CN201910373780.7

    申请日:2019-05-07

    Abstract: 本发明涉及一种基于注意力机制的全局特征和局部特征的行人再识别方法,包括:分别提取行人的全局特征和局部特征;在全局特征分支中,以整个行人特征图像作为输入,并将其送入空间注意力机制模块和通道注意力机制模块,将两个模块的特征表示进行融合;在局部特征分支中,把行人特征图水平平均分割为三部分,将分割的三部分输入到通道注意力机制模块得到每一部分的局部特征;将全局特征和局部特征送入特征向量提取模块,得到用于行人预测的特征向量;对整体网络进行训练,得到行人再识别模型。本发明充分利用行人图像的全局特征和局部特征,有效融合了注意力机制,使行人特征更具有判别力,获得了良好的行人再识别结果,提高了模型匹配准确率。

    基于注意力机制和多层次特征融合的低照度图像增强方法

    公开(公告)号:CN110210608B

    公开(公告)日:2021-03-26

    申请号:CN201910483957.9

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于注意力机制和多层次特征融合的低照度图像增强方法,包括以下步骤:在输入端对低照度图像进行处理,输出四通道特征图;使用基于注意力机制的卷积层作为特征提取模块,用于提取基础特征作为低层特征;将低层特征与相应的高层特征和卷积层最深层次的特征融合,经过反卷积层后,获得最终特征图;输出映射将最终的特征图还原成RGB图片。本发明充分利用了深度卷积神经网络模型的多层次特征,将不同层次特征融合,并通过通道注意力机制,给予特征通道不同的权重,获得了更优的特征表示,提高了图像处理的准确率,获取了高质量图像,可广泛用于计算机低层次视觉任务技术领域。

    基于注意力机制和多层次特征融合的低照度图像增强方法

    公开(公告)号:CN110210608A

    公开(公告)日:2019-09-06

    申请号:CN201910483957.9

    申请日:2019-06-05

    Abstract: 本发明涉及一种基于注意力机制和多层次特征融合的低照度图像增强方法,包括以下步骤:在输入端对低照度图像进行处理,输出四通道特征图;使用基于注意力机制的卷积层作为特征提取模块,用于提取基础特征作为低层特征;将低层特征与相应的高层特征和卷积层最深层次的特征融合,经过反卷积层后,获得最终特征图;输出映射将最终的特征图还原成RGB图片。本发明充分利用了深度卷积神经网络模型的多层次特征,将不同层次特征融合,并通过通道注意力机制,给予特征通道不同的权重,获得了更优的特征表示,提高了图像处理的准确率,获取了高质量图像,可广泛用于计算机低层次视觉任务技术领域。

    利用训练样本及折中度量的3D卷积神经网络构建方法

    公开(公告)号:CN107729993A

    公开(公告)日:2018-02-23

    申请号:CN201711033085.3

    申请日:2017-10-30

    CPC classification number: G06N3/0454

    Abstract: 本发明涉及一种利用训练样本及折中度量的3D卷积神经网络构建方法,其技术特点是:构造孪生结构的3D卷积神经网络;设置网络的损失函数,该损失函数由正样本损失、负样本损失及正则化损失构成,并在正则化损失中结合了马氏距离和欧氏距离;使用softmax损失函数,使用视频序列形式的数据集对网络进行预训练;构造正样本对和负样本对,对图像进行预处理和分割;有选择地利用训练样本对网络进行训练。本发明设计合理,其有选择地使用训练样本来提高训练效率并抑制过拟合,同时,在对特征进行度量时对欧氏距离和马氏距离进行权衡,从而构建3D卷积神经网络模型,试验表明本发明构建的模型及训练策略使得系统整体匹配率大大提升。

Patent Agency Ranking