-
公开(公告)号:CN107292914A
公开(公告)日:2017-10-24
申请号:CN201710450318.3
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于小型单支卷积神经网络的视觉目标跟踪方法,其主要技术特点是:搭建小型单支卷积神经网络;设计损失函数用于卷积神经网络的训练;对测试序列进行目标跟踪,当新视频帧到来时,根据损失函数的结果判断网络参数的更新与否;将卷积神经网络的输出结果送给二元分类器,预测出目标位置。本发明利用了深度卷积网络对目标物体强大的表示能力,构建小型单支卷积神经网络,提出新的损失函数和更新策略,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性以及跟踪速率,获得了很好的目标跟踪结果。
-
公开(公告)号:CN107240122A
公开(公告)日:2017-10-10
申请号:CN201710450319.8
申请日:2017-06-15
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
CPC classification number: G06T7/246 , G06T7/262 , G06T2207/10016 , G06T2207/20056 , G06T2207/20081
Abstract: 本发明涉及一种基于时空连续相关滤波的视频目标跟踪方法,其主要技术特点是:构造并计算损失函数;对输入帧进行深度卷积特征提取,利用深度卷积网络的第3~5层特征信息估计当前帧中目标的位置;根据每层估计的目标位置的准确度分配不同权重,将三层目标位置加权求和得到当前帧目标的最终位置;根据之前所有帧的估计结果更新模板。本发明结合了判别相关滤波器、深度学习技术,其利用多层特征进行目标位置估计,并根据之前所有帧的位置信息连续更新学习率,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性,获得了很好的目标跟踪效果。
-