基于小型单支卷积神经网络的视觉目标跟踪方法

    公开(公告)号:CN107292914A

    公开(公告)日:2017-10-24

    申请号:CN201710450318.3

    申请日:2017-06-15

    CPC classification number: G06T7/246 G06N3/084

    Abstract: 本发明涉及一种基于小型单支卷积神经网络的视觉目标跟踪方法,其主要技术特点是:搭建小型单支卷积神经网络;设计损失函数用于卷积神经网络的训练;对测试序列进行目标跟踪,当新视频帧到来时,根据损失函数的结果判断网络参数的更新与否;将卷积神经网络的输出结果送给二元分类器,预测出目标位置。本发明利用了深度卷积网络对目标物体强大的表示能力,构建小型单支卷积神经网络,提出新的损失函数和更新策略,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性以及跟踪速率,获得了很好的目标跟踪结果。

Patent Agency Ranking