-
公开(公告)号:CN109190626A
公开(公告)日:2019-01-11
申请号:CN201810842201.4
申请日:2018-07-27
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于深度学习的多路径特征融合的语义分割方法,包括以下步骤:使用多路径特征融合方法提取图像的基础深度特征;将提取的基础深度特征经过解码端网络,恢复原始图像分辨率信息,并生成分割结果;以交叉熵损失函数为目标训练网络,使用准确率和mIoU评价网络性能。本发明设计合理,其充分考虑了局部信息以及全局信息,在网络中的特征提取端和分类端添加了很多条路径,网络的输出是与原图像分辨率大小一致的分割图,使用图像已有的标签计算分割准确率,以最小化交叉熵损失函数为目标来训练网络,有效地提高了图像语义分割地准确率。
-
公开(公告)号:CN109190752B
公开(公告)日:2021-07-23
申请号:CN201810841610.2
申请日:2018-07-27
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于深度学习的全局特征和局部特征的图像语义分割方法,包括以下步骤:在编码端,使用基于深度学习卷积神经网络模型提取图像的基础深度特征,同时根据卷积层的深度将特征分为低层特征和高层特征;应用特征融合模块将低层特征和高层特征融合成增强型的深度特征;在获取深度特征后,将其输入到解码端;以交叉熵损失函数为目标训练网络,使用mIoU评价网络性能。本发明设计合理,其使用深度卷积神经网络模型提取图像的全局和局部特征,充分利用了全局特征和局部特征的互补性,并且利用了堆叠池化层进一步提高性能,有效地提高了图像语义分割地准确率。
-
公开(公告)号:CN109190752A
公开(公告)日:2019-01-11
申请号:CN201810841610.2
申请日:2018-07-27
Applicant: 国家新闻出版广电总局广播科学研究院 , 北京邮电大学
Abstract: 本发明涉及一种基于深度学习的全局特征和局部特征的图像语义分割方法,包括以下步骤:在编码端,使用基于深度学习卷积神经网络模型提取图像的基础深度特征,同时根据卷积层的深度将特征分为低层特征和高层特征;应用特征融合模块将低层特征和高层特征融合成增强型的深度特征;在获取深度特征后,将其输入到解码端;以交叉熵损失函数为目标训练网络,使用mIoU评价网络性能。本发明设计合理,其使用深度卷积神经网络模型提取图像的全局和局部特征,充分利用了全局特征和局部特征的互补性,并且利用了堆叠池化层进一步提高性能,有效地提高了图像语义分割地准确率。
-
-