-
公开(公告)号:CN113109900A
公开(公告)日:2021-07-13
申请号:CN202110274336.7
申请日:2021-03-15
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明提供一种集成零模波导芯片及其制备方法,集成零模波导芯片包括:衬底层,衬底层包括检测区和与检测区邻接的第一传输区;位于衬底层的检测区和第一传输区上的波导结构;位于检测区的波导结构上的阵列孔膜层,阵列孔膜层中具有若干纳米孔。集成零模波导芯片具有较高的集成度和较低的对准精度要求。
-
公开(公告)号:CN112950571A
公开(公告)日:2021-06-11
申请号:CN202110214864.3
申请日:2021-02-25
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明提供一种阴阳性分类模型建立方法、装置,设备及存储介质,应用于散热效率低于预设值的dPCR系统,方法包括:针对单次dPCR扩增反应,分别选取第一数量的阴性样本和阳性样本;分别选取第二数量的阴性样本和阳性样本作为训练样本乱序输入预设SVM训练模型,求取满足预设要求的第一超平面模型;分别将第三数量的阴性样本和阳性样本作为测试样本,依次输入所述第一超平面模型,当输出的测试样本的类别的正确率达到设定阈值时,确定所述第一超平面模型为dPCR系统的阴阳性分类模型;其中,所述第二数量与第三数量之和为第一数量,且第二数量和第三数量属于第一数量。本方案,分类准确率高,可有效保证dPCR定量的准确性,且dPCR扩增过程可被追踪。
-
公开(公告)号:CN111088331A
公开(公告)日:2020-05-01
申请号:CN201911294267.5
申请日:2019-12-16
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12Q1/6869
Abstract: 本发明公开了一种基于压电声波传感器的单分子测序方法,包括以下步骤:S1.在压电声波传感器表面修饰DNA聚合酶;S2.DNA模板单链小片段驱动进样;S3.基于质量放大原理在核苷酸磷酸链的活性端修饰磁珠;S4.修饰好的核苷酸进样;S5.在声波传感器微孔另一侧施加磁场;S6.传感器表面进行洗脱:S7.测试声波传感器的频率信号f1;S8.采用DNA聚合酶切除核苷酸磷酸链的活性端修饰的磁珠:S9.测试声波传感器的频率信号f2;计算f1与f2的差值,确定DNA模板单链的碱基种类;S10.清洗流道;重复上述步骤S3-S10,对微孔中的DNA模板单链进行连续测序;其提高了检测灵敏度,降低了测序成本。
-
公开(公告)号:CN110951580A
公开(公告)日:2020-04-03
申请号:CN201910932615.0
申请日:2019-09-29
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12M1/00 , C12M1/38 , C12M1/34 , C12Q1/6858
Abstract: 本发明公开了一种高通量单细胞转录组与基因突变整合分析一体化装置,包括高通量单细胞编码芯片和整合分析装置;所述整合分析装置包括壳体以及设置在所述壳体内的温控热循环模块、荧光成像模块和数据存储分析模块,所述荧光成像模块包括光源组件、显微物镜、荧光分光组件和成像探测器。本发明通过设计具有微孔空间坐标、细胞核酸标签和分子核酸标签的三重编码功能的高通量单细胞编码芯片,可将单细胞的基因突变、转录组和蛋白表达信息一一对应起来;再通过温控热循环模块可实现PCR扩增,通过荧光成像模块采集样品的荧光图像,通过数据存储分析模块对荧光图像进行存储于分析,能实现单细胞转录组与基因突变整合分析。
-
公开(公告)号:CN110643688A
公开(公告)日:2020-01-03
申请号:CN201910912751.3
申请日:2019-09-25
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12Q1/6851
Abstract: 本发明公开了一种超高通量的单细胞核酸实时荧光定量分析方法,包括以下步骤:1)提供一种微孔阵列芯片,所述微孔阵列芯片上设置有至少一个微孔阵列区,所述微孔阵列区包括多个微孔,所述微孔内壁上修饰有至少一个DNA探针;2)将待测样品加入所述微孔阵列芯片中,通过所述微孔捕获单细胞;3)通过所述DNA探针捕获目标核酸分子;4)进行PCR扩增检测,通过荧光定量分析,实现单细胞基因表达水平分析。本发明的方法可以实现十万量级、百万量级的单细胞捕获,通过多种荧光标记可实现多个基因位点的实时定量PCR分析检测,相比于现有产品,极大的提升了检测通量,并且实现了单个细胞的分析而非群体细胞分析。
-
公开(公告)号:CN103245486A
公开(公告)日:2013-08-14
申请号:CN201310151121.1
申请日:2013-04-26
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G01M11/00 , G05B19/418 , G05B19/042
CPC classification number: Y02P90/02
Abstract: 本发明公开了一种QCW半导体激光器老化寿命测试系统,包括服务器,所述服务器通过TCP/IP1000M以太网连接工业控制模块,所述工业控制模块通过LVDS低压差分接口连接n个激光器控制系统模块,所述激光器控制系统模块连接散热系统,所述激光器控制系统模块包括电流驱动模块,所述电流驱动模块连接激光器夹具和系统控制及数据采集模块。本发明适用于要求通道数量多、封装类型灵活多样的QCW半导体激光器做寿命测试下的参数监测方法及其设备,可以实现同时对2000台以上不同类型的半导体激光器做老化寿命测试。
-
公开(公告)号:CN112820830B
公开(公告)日:2025-01-03
申请号:CN202011615919.3
申请日:2020-12-30
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: H10K99/00
Abstract: 本发明提供一种柔性电子器件的制备方法及其制备装置,制备方法包括如下步骤:沿柔性衬底外轮廓方向对其进行均匀拉伸;所述柔性衬底拉伸到位后,在所述柔性衬底的拉伸状态下,将敏感单元材料呈阵列式涂覆到柔性衬底的表面;待所述柔性衬底上的敏感单元材料固化后,释放柔性衬底使其回缩至初始尺寸。此制备方法,通过沿柔性衬底外轮廓方向对其进行均匀拉伸,使柔性衬底沿其外轮廓方向向外均匀变形,其回缩后四周回缩均匀,涂覆在其表面上的敏感单元跟随其回缩,敏感单元回缩均匀,敏感单元各个方向应变均匀,回缩后敏感单元不会产生裂纹或褶皱。
-
公开(公告)号:CN117089605B
公开(公告)日:2024-05-03
申请号:CN202311061603.8
申请日:2023-08-22
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: C12Q1/6858 , C12N15/11
Abstract: 本发明涉及一种基于FQ‑RCA的RNA等温实时基因分型方法,属于分子生物学技术领域。本发明提供了一种基于FQ‑RCA的RNA等温实时基因分型方法,先通过splintR DNA连接酶连接分别与野生型RNA和突变型RNA完全匹配的两条锁式探针,形成DNA环状模板,再通过含有两套FQ探针的RCA反应进行实时荧光信号检测。此方法将FQ探针和RCA技术结合,实现了对RCA反应中突变位点的实时检测,并结合了splintR DNA连接酶能够以RNA为夹板高效连接DNA的特性,以及两套锁式探针相互竞争减少非特异性连接的方法,可以直接以RNA为靶标进行SNP基因分型检测,无需逆转录成cDNA。
-
公开(公告)号:CN117554349B
公开(公告)日:2024-03-19
申请号:CN202410039508.6
申请日:2024-01-11
Applicant: 中国科学院苏州生物医学工程技术研究所
Abstract: 本发明涉及荧光检测技术领域,公开了一种用于单分子传感的纳米集成光学芯片及荧光检测方法,芯片包括:表面具有检测区域的荧光传输层;至少两组光输入单元,光输入单元的输入端与外部激光光源相连接、输出端向检测区域通入激发光;至少一组激发波导单元设置在检测区域内,包括激发波导本体和多个微环谐振腔,激发波导本体的两端分别与两组光输入单元的输出端相连接;多个微环谐振腔间隔置于激发波导本体的旁侧;微环谐振腔呈圆环形,微环谐振腔的中心与激发波导本体中心之间的距离小于激发光波长的一半,微环谐振腔的周长为激发光波长的整数倍。激发光在微环谐振腔内发生谐振增强,提高了激发光照亮面积和强度一致性,提高检测效率和准确性。
-
公开(公告)号:CN112950571B
公开(公告)日:2024-02-13
申请号:CN202110214864.3
申请日:2021-02-25
Applicant: 中国科学院苏州生物医学工程技术研究所
IPC: G06T7/00 , G06V10/26 , G06V10/764 , H05K7/20
Abstract: 本发明提供一种阴阳性分类模型建立方法、装置,设备及存储介质,应用于散热效率低于预设值的dPCR系统,方法包括:针对单次dPCR扩增反应,分别选取第一数量的阴性样本和阳性样本;分别选取第二数量的阴性样本和阳性样本作为训练样本乱序输入预设SVM训练模型,求取满足预设要求的第一超平面模型;分别将第三数量的阴性样本和阳性样本作为测试样本,依次输入所述第一超平面模型,当输出的测试样本的类别的正确率达到设定阈值时,确定所述第一超平面模型为dPCR系统的阴阳性分类模型;其中,所述第二数量与第三数量之和为第一数量,且第二数量和第三数量属于第一数量。本方案,分类准确率高,可有效保证dPCR定量的准确性,且dPCR扩增过程可被追踪。
-
-
-
-
-
-
-
-
-