-
公开(公告)号:CN205015034U
公开(公告)日:2016-02-03
申请号:CN201520732019.5
申请日:2015-09-21
Applicant: 中国工程物理研究院化工材料研究所
IPC: G01F17/00
Abstract: 本实用新型公开了一种基于干法测试固体体积的非标样品池及其测试系统,涉及固体成型产品的体积测定领域。基于干法测试固体体积的非标样品池,被测样品的体积与非标样品池的有效容积的比率范围在60%-80%,非标样品池的进出口的横向尺寸大于被测样品的最大横向尺寸。基于干法测试固体体积的测试系统,它包括参考池、多个电磁螺线阀、传感器以及上述的非标样品池。参考池与非标样品池之间连接电磁螺线阀,在电磁螺线阀之间还连接有传感器。非标样品池的进气口连接一个进气阀,非标样品池的出气口连接一个第一出气阀。本实用新型提高了小体积固体成型样品体积测试精度、为产品设计及加工工艺更方便、准确地提供体积和密度物理性能参数。
-
公开(公告)号:CN107544500B
公开(公告)日:2020-12-29
申请号:CN201710839806.3
申请日:2017-09-18
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种考虑约束的无人艇靠泊行为轨迹规划方法,远端规划:1计算当前的期望艏向;2对期望艏向进行近障碍前瞻补偿;3更新无人艇位置;4判断无人艇是否到达远端规划目标点,是则结束远端规划转入近岸规划阶段,否则返回步骤1。近岸规划:1计算出指向第ii的初始值为1个虚拟码头的期望路径;2计算无人艇距离目标码头的距离,为当前期望速度添加码头约束;3更新无人艇位置;4判断无人艇是否抵达第i个虚拟码头,是则转步骤5,否则返回步骤2;5判断第i个虚拟码头是否为目标码头,是则规划完毕程序结束,否则令i=i+1,返回步骤1。本发明采用了改进人工势场法,为无人艇的自主靠泊控制问题提供便利。
-
公开(公告)号:CN107264759A
公开(公告)日:2017-10-20
申请号:CN201710502469.9
申请日:2017-06-27
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种变海况自驱收放式波浪推进翼,属于波浪能的收集和转换领域。包括摆动式水翼、传动连杆、蓄气装置、储气罐、动力输出杆、收放套杆、限位弹簧和收放弹簧。低海况下摆动式水翼受到收放弹簧的向上拉力,被拉离水面靠近航行器下表面,从而减小航行器的航行阻力,达到一定海况等级时,摆动式水翼克服限位弹簧的拉力向下运动,浸没到水线面以下,收集波浪能驱动水面航行器航行,航行器重新处于持续低海况状态时,储气罐内气压将逐渐减小,摆动式水翼受收放弹簧回复力作用,重新被拉回水面以上,从而实现不同海况下的自驱收放。本发明可减小低海况下航行阻力、节约水面航行器能源,有助于水面航行器的长期航行。
-
公开(公告)号:CN107264759B
公开(公告)日:2019-03-05
申请号:CN201710502469.9
申请日:2017-06-27
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了一种变海况自驱收放式波浪推进翼,属于波浪能的收集和转换领域。包括摆动式水翼、传动连杆、蓄气装置、储气罐、动力输出杆、收放套杆、限位弹簧和收放弹簧。低海况下摆动式水翼受到收放弹簧的向上拉力,被拉离水面靠近航行器下表面,从而减小航行器的航行阻力,达到一定海况等级时,摆动式水翼克服限位弹簧的拉力向下运动,浸没到水线面以下,收集波浪能驱动水面航行器航行,航行器重新处于持续低海况状态时,储气罐内气压将逐渐减小,摆动式水翼受收放弹簧回复力作用,重新被拉回水面以上,从而实现不同海况下的自驱收放。本发明可减小低海况下航行阻力、节约水面航行器能源,有助于水面航行器的长期航行。
-
公开(公告)号:CN108459602A
公开(公告)日:2018-08-28
申请号:CN201810165108.4
申请日:2018-02-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了多障碍复杂环境下欠驱动无人艇的自主靠泊方法,属于水面无人艇局部动态靠泊规划领域。包括:计算目标泊位的一级引导点,二级引导点;判断无人艇是否到达一级引导点,二级引导点;计算无人艇当前位置与目标泊位间的距离;结合LOS视线法计算当前无人艇的靠泊约束集;计算当前无人艇与周围障碍物的最短碰撞时间;计算当前情况下无人艇的椭圆碰撞锥;利用基于COLREGS的多障碍启发式算法,选择无人艇速度矢量;计算无人艇下一时刻的位置。在传统速度障碍法中加入多级目标引导和靠泊约束集,成功实现多障碍复杂环境下欠驱动无人艇的自主靠泊,充分考虑了无人艇自身动力学、运动学和目标泊位的约束特性,使无人艇在自主靠泊中遵守海事规则。
-
公开(公告)号:CN106005324B
公开(公告)日:2017-10-31
申请号:CN201610487760.9
申请日:2016-06-28
Applicant: 哈尔滨工程大学
IPC: B63G8/22
Abstract: 本发明提供一种气压检测高精度储压式浮力调节装置,属于海洋无人航行器领域,包括固定于耐压舱端盖外壁的储压浮力器,储压浮力器包括与舱盖连接处的螺纹接口、带O型圈的封闭螺母、耐压壳体、胶囊、充气口、防护罩、螺堵以及位于壳体内胶囊外的气压传感器,可以测量储压器空气体积的改变;以及位于耐压舱内部的电机、轴向柱塞泵、连接电机和柱塞泵的联轴器;装置还包括位于耐压舱端盖的穿板接头、穿板电磁球阀、水密导线接插件,耐压舱内还设有电磁换向阀,电磁换向阀使泵体连接的水路进出口在储压浮力器和连接环境管口之间进行交换,储压浮力器平衡不同工作状态的压力,注排水量根据气压传感器来精确测定。
-
公开(公告)号:CN106005324A
公开(公告)日:2016-10-12
申请号:CN201610487760.9
申请日:2016-06-28
Applicant: 哈尔滨工程大学
IPC: B63G8/22
CPC classification number: B63G8/22
Abstract: 本发明提供一种气压检测高精度储压式浮力调节装置,属于海洋无人航行器领域,包括固定于耐压舱端盖外壁的储压浮力器,储压浮力器包括与舱盖连接处的螺纹接口、带O型圈的封闭螺母、耐压壳体、胶囊、充气口、防护罩、螺堵以及位于壳体内胶囊外的气压传感器,可以测量储压器空气体积的改变;以及位于耐压舱内部的电机、轴向柱塞泵、连接电机和柱塞泵的联轴器;装置还包括位于耐压舱端盖的穿板接头、穿板电磁球阀、水密导线接插件,耐压舱内还设有电磁换向阀,电磁换向阀使泵体连接的水路进出口在储压浮力器和连接环境管口之间进行交换,储压浮力器平衡不同工作状态的压力,注排水量根据气压传感器来精确测定。
-
公开(公告)号:CN107544500A
公开(公告)日:2018-01-05
申请号:CN201710839806.3
申请日:2017-09-18
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 本发明提供一种考虑约束的无人艇靠泊行为轨迹规划方法,远端规划:1计算当前的期望艏向;2对期望艏向进行近障碍前瞻补偿;3更新无人艇位置;4判断无人艇是否到达远端规划目标点,是则结束远端规划转入近岸规划阶段,否则返回步骤1。近岸规划:1计算出指向第ii的初始值为1个虚拟码头的期望路径;2计算无人艇距离目标码头的距离,为当前期望速度添加码头约束;3更新无人艇位置;4判断无人艇是否抵达第i个虚拟码头,是则转步骤5,否则返回步骤2;5判断第i个虚拟码头是否为目标码头,是则规划完毕程序结束,否则令i=i+1,返回步骤1。本发明采用了改进人工势场法,为无人艇的自主靠泊控制问题提供便利。
-
公开(公告)号:CN108459602B
公开(公告)日:2021-03-30
申请号:CN201810165108.4
申请日:2018-02-28
Applicant: 哈尔滨工程大学
Abstract: 本发明公开了多障碍复杂环境下欠驱动无人艇的自主靠泊方法,属于水面无人艇局部动态靠泊规划领域。包括:计算目标泊位的一级引导点,二级引导点;判断无人艇是否到达一级引导点,二级引导点;计算无人艇当前位置与目标泊位间的距离;结合LOS视线法计算当前无人艇的靠泊约束集;计算当前无人艇与周围障碍物的最短碰撞时间;计算当前情况下无人艇的椭圆碰撞锥;利用基于COLREGS的多障碍启发式算法,选择无人艇速度矢量;计算无人艇下一时刻的位置。在传统速度障碍法中加入多级目标引导和靠泊约束集,成功实现多障碍复杂环境下欠驱动无人艇的自主靠泊,充分考虑了无人艇自身动力学、运动学和目标泊位的约束特性,使无人艇在自主靠泊中遵守海事规则。
-
公开(公告)号:CN108267955B
公开(公告)日:2021-03-30
申请号:CN201810044826.6
申请日:2018-01-17
Applicant: 哈尔滨工程大学
IPC: G05B13/04
Abstract: 本发明公开了面向无人艇自主靠泊的运动控制方法,属于无人艇自主靠泊运动控制领域。步骤为:根据无人艇当前的靠泊状态确定当前控制系统模式;获取当前无人艇的实际速度或航向,获得航向或航速的控制偏差和偏差变化率;将其作为模糊控制器输入,结合当前控制系统模式选择合适的控制参数变化量并更新控制参数;将e(t)作为控制器输入,由控制器输出期望控制指令传递给执行器。本发明在传统PID控制器上进行改进,将控制器分成了两种模式——远端模式和近岸模式,加入自适应模糊控制规则,使其根据靠泊行为改变进行控制参数的动态自适应调整,解决欠驱动无人艇自主靠岸时的弱机动,大扰动以及强岸壁效应等影响下的运动控制难题。
-
-
-
-
-
-
-
-
-