-
公开(公告)号:CN112990220A
公开(公告)日:2021-06-18
申请号:CN202110417894.4
申请日:2021-04-19
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及人工智能技术领域,特别涉及一种图像中目标文本智能识别方法。该方法步骤如下:将目标文本由像素点坐标表示,输入目标文本像素点坐标值对像素坐标识别神经网络进行训练,获得文本自编码模型和目标文本的表述特征;根据区域的高度值计算背景区域数量,提取覆盖背景区域,剩余区域为前景区域;利用训练好的文本自编码模型在前景区域中获得待识别的文本的表述特征,将文本的表述特征与期望的目标文本的表述特征进行对比判断,若两者误差达到预设阈值,则识别文字为目标文本。本发明还提供一种图像中目标文本智能识别系统。本发明通过基于文本自编码模型来识别目标文本,能够精准定位目标文本在图像中的位置,计算复杂度低,识别准确率高。
-
公开(公告)号:CN110505348B
公开(公告)日:2020-10-09
申请号:CN201910794491.4
申请日:2019-08-27
Applicant: 烟台中科网络技术研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种APP收集用户个人敏感信息的风险评估方法,通过对APP进行静态分析以及动态分析,得出权限评分、调用函数评分、SDK评分、流量包参数评分和域名评分,再进行加权求和,得出被评估APP的最终评分,根据评估矩阵得出被评估APP的风险评级;根据风险评级反向维护SDK风险权重库和域名风险权重库,对SDK或域名进行风险权重的修正。本发明的APP收集用户个人敏感信息的风险评估方法包含用户输入的用户个人敏感信息、非用户输入的潜在用户个人敏感信息,对APP收集用户个人敏感信息的风险程度进行量化,更全面的涵盖了多种敏感信息点,细化了APP收集用户个人敏感信息的风险大小,能大批量的评估APP收集用户个人敏感信息的风险程度。
-
公开(公告)号:CN106685757B
公开(公告)日:2019-12-17
申请号:CN201611168667.8
申请日:2016-12-16
Applicant: 烟台中科网络技术研究所 , 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L12/26
Abstract: 本发明涉及一种评估网络性能的方法及装置,该方法包括:选择多个指标;对当前网络进行测量,在预设时间段内对每个指标进行多次测量,获得测量值;根据获得的测量值确定每个指标的阈值;计算每个指标的所有测量值分别与阈值的数据偏离差值;对得到的数据偏离差值进行处理,得到每个指标的指标值;对得到的所有指标值进行加权处理,得到评估网络性能的综合指标值F。本发明提供的一种评估网络性能的方法及装置,实现了对多个网络性能指标进行综合评价,当加入新指标时,无需重新制定评价机制,适应性更强,可根据使用者评估需求选择多种指标进行综合评价,对网络质量的评价更客观更合理。
-
公开(公告)号:CN115190217B
公开(公告)日:2024-03-26
申请号:CN202210801788.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04N1/44 , H04N19/60 , H04L9/40 , G06T9/00 , G06F21/60 , G06N3/0455 , G06N3/0464
Abstract: 本发明公开了一种融合自编码网络的数据安全加密方法和装置,涉及互联网数据处理技术领域。本发明为了解决现有数据安全加密时面对包含大量图片的海量数据存储资源开销大、数据传输不安全、数据传输效率低的缺陷,其方法为采用文本加密模块对文本类型数据作加密处理,构建图片自编码网络模型,采用图片压缩模块对待加密的原始图片类型数据作预压缩处理;采用图片加密模块对图片压缩编码作加密处理,采用解密模块对需要应用于下游任务的文本密文数据或图片密文数据进行解密,采用图片重建模块对解密后的图片压缩编码进行重建复原,译码器将码字通过重建处理后得到重建图片类型数据。本发明主要用于海量数据传输。
-
公开(公告)号:CN116628515A
公开(公告)日:2023-08-22
申请号:CN202310538586.6
申请日:2023-05-12
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F18/22 , G06F18/25 , G06N3/0464 , G06N3/08 , G06F17/16
Abstract: 本发明涉及社交网络技术领域,尤其为基于同空间用户特征传递的多网络身份对齐系统及方法,包括:数据采集模块:用于采集社交网络中的用户数据;身份学习模块:用于通过搭建网络拓扑结构与采集的用户数据相结合进行用户的多社交网络身份学习;身份传递模块:用于通过网络拓扑结构将用户数据进行多社交网络传递;向量生成模块:用于通过所述网络拓扑结构和用户数据获取多社交网络用户在同一个空间上的用户向量;身份对齐模块:用于通过相似度算法实现对未标注的潜在锚链路进行用户身份对齐。本发明利用自注意力机制,对用户的不同属性特征进行学习、融合,进行锚链路对齐判别,对用户的不同属性信息进行有效地整合与协调,进一步提高了用户身份的对齐准确性。
-
公开(公告)号:CN116935117A
公开(公告)日:2023-10-24
申请号:CN202310887423.9
申请日:2023-07-19
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V10/764 , G06V10/56
Abstract: 本发明涉及标志物检测系统领域,尤其为一种复杂场景下特定标志物检测系统,包括:收集模块:用于通过网络爬虫技术对特定标志物图片进行收集,获得特定标志物图片;处理模块:用于对收集模块收集的特定标志物图片进行图片预处理,获得预处理数据;分类器训练模块:用于根据处理模块处理得到的预处理数据进行模型训练,得到自动分类模型;分类模块:用于连接自动分类模型,对特定标志物图片进行分类。本发明通过颜色和形状的标志物检测算法,从色彩增强、颜色分割和形状分类三个方面提高特定标志物检测系统算法的鲁棒性,通过比较RGB和HSV颜色分割效果,选取效果更好的HSV颜色分割,在形状分类中不仅仅使用简单的SVM模型训练而且同时使用Contourlet变化提高算法的鲁棒性使的算法预测效果更好,保证出现差错在系统允许的范围内。
-
公开(公告)号:CN115190217A
公开(公告)日:2022-10-14
申请号:CN202210801788.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种融合自编码网络的数据安全加密方法和装置,涉及互联网数据处理技术领域。本发明为了解决现有数据安全加密时面对包含大量图片的海量数据存储资源开销大、数据传输不安全、数据传输效率低的缺陷,其方法为采用文本加密模块对文本类型数据作加密处理,构建图片自编码网络模型,采用图片压缩模块对待加密的原始图片类型数据作预压缩处理;采用图片加密模块对图片压缩编码作加密处理,采用解密模块对需要应用于下游任务的文本密文数据或图片密文数据进行解密,采用图片重建模块对解密后的图片压缩编码进行重建复原,译码器将码字通过重建处理后得到重建图片类型数据。本发明主要用于海量数据传输。
-
公开(公告)号:CN110061975A
公开(公告)日:2019-07-26
申请号:CN201910249260.5
申请日:2019-03-29
Applicant: 中国科学院计算技术研究所 , 国家计算机网络与信息安全管理中心
IPC: H04L29/06
Abstract: 本发明涉及一种基于离线流量包解析的仿冒网站识别方法,包括:根据已知网站信息库训练随机森林分类器,以构建对仿冒网站的判别模型;获取待检测网站的数据流并保存为离线流量包,通过该离线流量包得到该待检测网站的网站信息;根据该已知网站信息库对该网站信息进行规则匹配,对匹配为仿冒网站的待检测网站进行标识,将匹配失败的网站信息通过该判别模型进行判别,并对判别为仿冒网站的待检测网站进行标识。
-
公开(公告)号:CN119274543A
公开(公告)日:2025-01-07
申请号:CN202411113422.X
申请日:2024-08-14
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及声学动态提取技术领域,具体地说,涉及一种基于深度神经网络的声学特征动态提取方法。其包括以下步骤:S1、对音频数据进行预处理,将音频数据分帧;S2、将分帧后的音频信号进行傅里叶变换,使其从时域信号转换到频域信号并得到频谱图;S3、对频谱图进行预处理,将预处理后频谱图作为深度神经网络的输入;S4、在深度神经网络中使用一阶和二阶差分参数实现动态特征提取,再将一阶和二阶差分参数组合成特征向量输入深度神经网络;S5、将提取的特征序列通过序列标注的方法输出音频信号中的时间变化信息;深度神经网络不仅能够自动提取声学特征,还能捕捉这些特征在时间序列上的动态变化,有利于对声学场景的理解和分类准确。
-
公开(公告)号:CN115080871B
公开(公告)日:2024-05-17
申请号:CN202210847062.0
申请日:2022-07-07
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/9536 , G06F16/901 , G06N3/0464 , G06N3/042 , G06N3/045 , G06N3/08 , G06Q50/00
Abstract: 本发明公开了一种跨社交网络社交用户对齐方法,涉及社交网络的用户关系挖掘领域。本发明为了解决现有社交用户对齐方法不能跨社交网络、计算精度低、对齐效率低的缺陷,采用如下步骤实现:采集社交网络的用户属性信息,构建用户关系拓扑图;根据边权重和节点的出入度计算节点权重;构建一阶近邻关系模型和二阶近邻关系模型,确定一阶邻居节点和二阶邻居节点,得到用户节点之间的相互关系;构建社交对齐神经网络,通过社交对齐神经网络对用户关系拓扑图中各节点进行邻居节点的信息聚合、拼接与非线性变换,得到跨社交网络的社交用户身份对齐结果。本发明主要用于通过跨社交网络对其社交用户实现用户关系挖掘。
-
-
-
-
-
-
-
-
-