一种多模态深度感知的高精度集成动态手势识别方法

    公开(公告)号:CN118155290A

    公开(公告)日:2024-06-07

    申请号:CN202410442762.0

    申请日:2024-04-12

    Abstract: 本发明公开了一种多模态深度感知的高精度集成动态手势识别方法。首先获取动态手势数据集,应用2D和3D数据增强方法增加样本数量;然后将增强后的数据进行灰度变换,并分别输入3D‑CNN子网络、ConvLSTM子网络和TCN子网络分别提取手势序列特征;将手势序列特征直接或融合输入相应分类器;最后将分类器结果集成,输出最终的概率分布。本发明额外对数据进行了数据增强和灰度变换,在数据原有的多模态之外,增加了灰度2D和灰度3D模态,使得本方法能识别分辨率更低的输入图像;并且本发明使用了一种优化加权集成,能够更有效地优化的综合多模态的分类结果。

    一种基于不对齐多源数据的光谱图像融合超分方法及系统

    公开(公告)号:CN118967450A

    公开(公告)日:2024-11-15

    申请号:CN202411452810.0

    申请日:2024-10-17

    Abstract: 本发明涉及一种基于结构信息的不对齐多源数据的光谱图像融合超分方法及系统,属于计算摄像技术领域。本发明首先使用梯度计算对输入的高光谱和多光谱图像提取梯度图,再使用纹理编码器和结构编码器分别对图像和梯度图进行编码,获取纹理特征金字塔和结构特征金字塔,然后使用结构注意力引导的特征融合对齐模块在各个层级进行特征融合获得对齐特征,最后使用解码器网络对对齐特征进行解码,生成高分辨率高光谱图像。本发明使特征对齐效果更加鲁棒,使超分辨率效果更好,在真实数据集和仿真数据集的各个倍率的超分任务中均取得很好的结果,在高倍率超分任务中具有优势,易于推广。

    一种基于Transformer和双域选择机制的图像散焦去模糊方法

    公开(公告)号:CN118469844A

    公开(公告)日:2024-08-09

    申请号:CN202410673350.8

    申请日:2024-05-28

    Abstract: 本发明公开了一种基于Transformer和双域选择机制的图像散焦去模糊方法,包括步骤如下:步骤一:数据集获取及预处理;步骤二:构建一种基于Transformer和双域选择机制的图像散焦去模糊网络模型;步骤三:使用预处理后的数据集训练基于Transformer和双域选择机制的图像散焦去模糊的网络模型;步骤四:通过训练好的网络模型完成图像散焦去模糊测试。本发明通过深度提取初始特征和末尾特征,并通过剔除特征中的低频信息来增强高频信息。采用端到端的方法构建神经网络,其中利用Transformer模块在一个尺度上提取高质量的图像信息,并通过双域选择模块来保持空间细节的精确性。

Patent Agency Ranking