-
公开(公告)号:CN113537113B
公开(公告)日:2022-10-25
申请号:CN202110844909.5
申请日:2021-07-26
Applicant: 哈尔滨工程大学
Abstract: 基于复合神经网络的水声目标识别方法,它属于水声信号识别技术领域。本发明是为了解决采用现有方法对水声目标识别的准确率低的问题。本发明设计了基于复合神经网络的基层网络结构,先通过LSTM算法对输入音频样本数据的时序特征进行学习,得到一个通过算法更新后的状态信息作为中间向量,进而将这一层次中的状态信息继续通过CNN网络进行传递,经过CNN网络中的卷积池化运算得到输入音频样本数据的空间特征,最后通过CNN网络最后一层的softmax函数得到水声目标识别结果。本发明可以应用于水声信号识别。
-
公开(公告)号:CN113532422B
公开(公告)日:2022-06-21
申请号:CN202110784798.3
申请日:2021-07-12
Applicant: 哈尔滨工程大学
Abstract: 一种基于距离图和数据清洗的多传感器航迹融合方法,它属于多传感器信息融合技术领域。本发明是为解决现有多传感器航迹融合方法存在着计算量与融合精度不平衡的问题。本发明将采样点的距离作为判定两条航迹在该时刻是否关联的依据,在此基础上构造距离图,通过对距离图的剪枝完成航迹关联,从而更好的放映航迹之间的关联关系,以较小的时间代价获得了较高的关联精度。运用格拉布斯准则对关联航迹进行数据清洗,剔除传感器航迹中的离群点,用较少的融合时间达到了较高的融合精度,为多传感器航迹融合问题提供了技术支持。本发明可以应用于对多传感器航迹进行融合。
-
公开(公告)号:CN114022714A
公开(公告)日:2022-02-08
申请号:CN202111333621.8
申请日:2021-11-11
Applicant: 哈尔滨工程大学
IPC: G06V10/764 , G06V10/82 , G06N3/04 , G06N3/08
Abstract: 一种基于Harris的数据增强图像分类方法及系统,它属于数据处理技术与计算机视觉技术相结合的学科交叉领域。本发明解决了采用现有的数据增强方法获得的图像分类准确率低的问题。本发明通过采用Harris算法进行数据增强,使训练好的卷积神经网络提取图像信息特征的强大功能得以充分利用,提高了对图像分类的准确率、鲁棒性以及泛化性能;与现有的数据增强算法相比,在相同难度的图像分类任务中,本发明方法的收敛速度较快,算法的运行效率更高,总回报增多,能够有效进行训练数据集的遮挡,加大训练难度,使分类算法的准确率上升了3.86%,从而提高了算法的性能。本发明可以应用于图像分类领域。
-
公开(公告)号:CN113537113A
公开(公告)日:2021-10-22
申请号:CN202110844909.5
申请日:2021-07-26
Applicant: 哈尔滨工程大学
Abstract: 基于复合神经网络的水声目标识别方法,它属于水声信号识别技术领域。本发明是为了解决采用现有方法对水声目标识别的准确率低的问题。本发明设计了基于复合神经网络的基层网络结构,先通过LSTM算法对输入音频样本数据的时序特征进行学习,得到一个通过算法更新后的状态信息作为中间向量,进而将这一层次中的状态信息继续通过CNN网络进行传递,经过CNN网络中的卷积池化运算得到输入音频样本数据的空间特征,最后通过CNN网络最后一层的softmax函数得到水声目标识别结果。本发明可以应用于水声信号识别。
-
公开(公告)号:CN117711493A
公开(公告)日:2024-03-15
申请号:CN202311730187.6
申请日:2023-12-15
Applicant: 哈尔滨工程大学
Abstract: 一种基于深度图嵌入聚类的单细胞RNA测序数据聚类方法,它属于深度学习和单细胞RNA测序数据分析技术领域。本发明解决了由于现有方法对单细胞RNA测序数据去噪和降维的成效有限、数据存在批次效应且数据存在丢失导致对单细胞RNA测序数据聚类效果不佳的问题。本发明对单细胞RNA测序数据集进行数据筛选、归一化、添加噪声处理,再将添加噪声处理后的基因表达矩阵输入到基于ZINB分布的去噪自动编码器,得到去噪和降维后的基因表达矩阵;得到的基因表达矩阵再作为深度图嵌入聚类模型的输入进而得到输出数据;并对输出数据进行降维,再对降维后的数据进行聚类。本发明方法可以应用于单细胞RNA测序数据分析。
-
公开(公告)号:CN113467481B
公开(公告)日:2022-10-25
申请号:CN202110918358.2
申请日:2021-08-11
Applicant: 哈尔滨工程大学
IPC: G05D1/02
Abstract: 一种基于改进Sarsa算法的路径规划方法,属于强化学习和路径规划领域。本发明为了解决基于传统Sarsa算法的路径规划过程存在规划收敛速度较慢、规划效率较低的问题。本发明针对于待进行路径规划的区域建立地图模型,引入路径矩阵P(s,a),在智能体探索的过程中,动态调整贪婪因子ε,采用ε‑greedy策略进行动作选择,智能体采取动作a后,环境会反馈一个奖励R并进入到下一个状态s′;并基于路径矩阵更新Q值表,从而基于改进的Sarsa算法实现路径规划。主要用于机器人的路径规划。
-
公开(公告)号:CN110361006B
公开(公告)日:2022-07-19
申请号:CN201910575692.5
申请日:2019-06-28
Applicant: 哈尔滨工程大学
Abstract: 本发明是局部航迹分维度的选择性航迹状态估计融合方法。本发明对局部航迹进行读取和预处理,进行时间对准和空间对准;对局部航迹按纬度进行拆分,利用基于灰色接近关联度的航迹质量衡量算法进行单纬度下的航迹质量计算,并分维度排序;设置循环次数,根据航迹质量依据选择单纬度航迹数,将两条高质量的单纬度航迹和进行航迹状态估计融合,得到融合航迹,确定系统航迹;当融合航迹的航迹质量大于高质量的单纬度航迹的航迹质量,本发明实现了局部航迹的选择性融合,维度拆分后,再经过算法结构实现航迹选择,并采用局部航迹与局航迹的多传感器的简单凸组合融合方法后,融合生成的系统航迹精度有所提高。
-
公开(公告)号:CN110361006A
公开(公告)日:2019-10-22
申请号:CN201910575692.5
申请日:2019-06-28
Applicant: 哈尔滨工程大学
Abstract: 本发明是局部航迹分维度的选择性航迹状态估计融合方法。本发明对局部航迹进行读取和预处理,进行时间对准和空间对准;对局部航迹按纬度进行拆分,利用基于灰色接近关联度的航迹质量衡量算法进行单纬度下的航迹质量计算,并分维度排序;设置循环次数,根据航迹质量依据选择单纬度航迹数,将两条高质量的单纬度航迹和进行航迹状态估计融合,得到融合航迹,确定系统航迹;当融合航迹的航迹质量大于高质量的单纬度航迹的航迹质量,本发明实现了局部航迹的选择性融合,维度拆分后,再经过算法结构实现航迹选择,并采用局部航迹与局航迹的多传感器的简单凸组合融合方法后,融合生成的系统航迹精度有所提高。
-
-
-
-
-
-
-