-
公开(公告)号:CN117474076A
公开(公告)日:2024-01-30
申请号:CN202311172503.2
申请日:2023-09-12
Applicant: 哈尔滨工业大学(深圳)(哈尔滨工业大学深圳科技创新研究院)
IPC: G06N3/092 , G06N3/0499 , G06F17/18 , G06F17/11
Abstract: 本发明涉及一种火星探测器动力下降段的对抗式逆强化学习着陆方法。其中的方法包括:获取火星探测器的当前状态,以及初始化对抗式逆强化学习网络模型的网络参数,模型设置有策略网络和判别网络,采用专家数据库进行训练,根据当前状态,通过策略网络生成一系列的状态动作对轨迹,通过判别网络计算状态动作对轨迹的奖励值,以生成新的最优动作轨迹,将最优动作轨迹作为控制命令输出,并从最优动作轨迹中采样数据以更新策略网络的网络参数。本发明通过对抗式逆强化学习算法完成火星探测器着陆时动力下降段的着陆任务,通过设计策略网络、判别网络及网络训练各项参数,使得控制器能够满足执行机构故障、引力场未知状况下的着陆要求。
-
公开(公告)号:CN114996839B
公开(公告)日:2023-04-28
申请号:CN202210457712.0
申请日:2022-04-28
Applicant: 哈尔滨工业大学
Abstract: 近距离下服务航天器机动策略的规划方法,它属于航天器在轨服务自主规划领域。本发明解决了现有的规划方案未考虑对单个目标的最优交会轨迹以及传统的近距离制导方式难以克服轨道摄动的影响,导致交会误差大的问题。本发明方法以燃料消耗和任务总时间为规划指标,将目标规划和轨迹规划分成上下两层,设计了一种两层优化求解的方法框架。上层求解交会次序和分配时间,下层求解最优交会轨迹,通过在交会制导中设计迭代制导计算思路,以实现服务航天器对每个目标的精确交会,克服了交会的偏差。本发明方法可以应用于航天器在轨服务自主规划领域。
-
公开(公告)号:CN115859731A
公开(公告)日:2023-03-28
申请号:CN202211623436.7
申请日:2022-12-16
Applicant: 哈尔滨工业大学
IPC: G06F30/23 , G06F111/04 , G06F111/06
Abstract: 一种风力机叶片约束层阻尼敷设方案优化方法、装置及设备,涉及风力发电技术领域,解决的技术问题为“如何实现风力机叶片更好的抑颤效果”,方法包括如下步骤:获取可敷设约束层阻尼设计变量;采用遗传算法对所述设计变量进行优化;基于优化后的设计变量,建立约束层阻尼敷设后的风力机叶片的有限元模型;根据所述有限元模型,对所述约束层阻尼敷设后的风力机叶片进行模态分析;判断模态分析结果是否满足优化结束条件,若满足则结束优化,否则重复上述步骤。该方法采用遗传算法,可以有效抑制随机风载下风力机叶片的挥舞和摆振振动,具有较好的应用前景,适用于风力机叶片约束层阻尼敷设场景。
-
公开(公告)号:CN115081884A
公开(公告)日:2022-09-20
申请号:CN202210723636.3
申请日:2022-06-23
Applicant: 哈尔滨工业大学
Abstract: 一种分布式星上在线多对多任务规划方法,它属于服务航天器任务规划领域。本发明解决了现有方法生成方案的速度慢,动态方案调整的响应时间长的问题。本发明的方案为:步骤一、收集在轨服务的任务需求和计算时间要求,再计算内层拍卖最大迭代轮次参数;步骤二、基于计算出的内层拍卖最大迭代轮次参数,在各服务航天器燃料约束下对在轨服务的任务进行分配,得到所有任务执行顺序清单和变轨过程时长信息;步骤三、通过考虑变轨过程中摄动力的影响,对变轨过程中各阶段速度脉冲进行校正,根据所有任务执行顺序清单、变轨过程时长信息以及校正后的各阶段速度脉冲获得最终的规划方案。本发明方法可以应用于服务航天器任务规划。
-
公开(公告)号:CN113156987B
公开(公告)日:2022-05-31
申请号:CN202110422593.0
申请日:2021-04-15
IPC: G05D1/08
Abstract: 结合双框架剪式力矩陀螺和飞轮的航天器执行机构及其控制方法,属于航天器姿态控制技术领域,解决了现有采用飞轮或单框架控制力矩陀螺对航天器态控制存在输出力矩小、响应慢或控制算法复杂,且计算量大的问题。本发明采用双框架剪式力矩陀螺驱动航天器进行姿态机动,以三个飞轮吸收双框架剪式力矩陀螺在驱动航天器姿态变换过程中产生的干扰力矩,通过调整DGSPCMG的两个框架角,使航天器始终在欧拉轴方向具备最大机动能力。本发明适用于航天器姿态控制。
-
公开(公告)号:CN112572834A
公开(公告)日:2021-03-30
申请号:CN202011423387.3
申请日:2020-12-08
Applicant: 哈尔滨工业大学
IPC: B64G1/24
Abstract: 本发明公开了一种考虑矩形视场的目标区域规避相对位姿一体化控制方法,涉及航天器在轨服务领域。本发明为了解决机动的可行空间较小问题,同时实现对航天器控制的优化,通过考虑航天器敏感器的实际四棱锥视场,最大程度的构建视场真实模型,建立相对位姿一体化运动学模型,构建约束姿态和禁止区域两种约束,分别设计吸引势函数和排斥势函数,使得系统状态在整个逼近的机动过程中满足约束姿态、禁止区域约束;设计位姿一体化控制律实现服务航天器逼近目标航天器的过程中能够到达期望位置的同时持续观测目标航天器以及规避目标航天器的探测。本发明适用于航天器在轨观测及规避的应用。
-
公开(公告)号:CN106814746B
公开(公告)日:2019-10-08
申请号:CN201710186957.3
申请日:2017-03-24
Applicant: 哈尔滨工业大学
Abstract: 一种航天器姿轨一体化反步跟踪控制方法,本发明涉及航天器姿轨一体化反步跟踪控制方法。本发明为了解决现有技术对航天器的轨道与姿态采用分别独立的控制方式导致跟踪效果差的缺点。本发明步骤包括:步骤一:基于对偶四元数建立航天器姿轨一体化相对运动学和动力学模型;步骤二:根据步骤一建立的航天器姿轨一体化相对运动学和动力学模型,基于反步法设计控制器;步骤三:根据步骤二设计的控制器,设计基于抗饱和法的输入有界控制器。本发明在反步控制器的基础上考虑输入有界问题,设计了基于抗饱和环节的输入有界反步控制器。本发明能够实现追踪航天器对目标航天器的六自由度姿轨协同跟踪,适用于实际的在轨情况,本发明用于航天领域。
-
公开(公告)号:CN105353763B
公开(公告)日:2018-03-30
申请号:CN201510869675.4
申请日:2015-12-01
Applicant: 哈尔滨工业大学
Abstract: 一种非合作目标航天器相对轨道姿态有限时间控制方法,涉及航空航天领域。解决了目前非合作目标的航天器相对轨道姿态联合控制中所存在的问题。一种非合作目标航天器相对轨道姿态有限时间控制方法包括以下步骤:步骤一:将用惯性系表示的相对轨道动力学模型投影到视线系,采用视线系描述航天器的相对轨道动力学模型;步骤二:建立姿态动力学模型和姿态运动学模型;步骤三:将相对轨道动力学模型、姿态动力学模型和姿态运动学模型进行状态空间表示,获得相对轨道姿态动力学模型;步骤四:根据相对轨道姿态动力学模型和有限时间控制理论获得有限时间连续控制器。本发明适用于非合作目标航天器的相对轨道姿态联合控制。
-
公开(公告)号:CN105182801B
公开(公告)日:2017-10-03
申请号:CN201510717204.1
申请日:2015-10-29
Applicant: 哈尔滨工业大学
IPC: G05B17/02
Abstract: 一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法,本发明涉及PD控制方法。本发明是要解决控制策略的制定较为简单,控制精度有待提高、没有考虑系统的不确定性挠性附件的影响、没有考虑平台的结构非线性以及控制算法的设计过程具有任意性的问题而提出的一种基于扩张状态观测器的Stewart平台主动隔振PD控制方法。该方法是通过一、建立Stewart平台的动力学模型;二、建立Stewart平台的六个执行机构的动力学模型;三、得到Stewart平台的状态空间;四、确定观测器对系统状态的观测误差为收敛的观测误差;五、设计基于扩张观测器的PD控制器等步骤实现的。本发明应用于PD控制方法领域。
-
公开(公告)号:CN104020778B
公开(公告)日:2017-07-28
申请号:CN201410273422.6
申请日:2014-06-18
Applicant: 哈尔滨工业大学
IPC: G05D1/10
Abstract: 基于跟踪时间‑能耗最优轨线的挠性卫星姿态机动控制方法,涉及一种挠性卫星姿态的机动控制方法。为了解决转动惯量拉偏和损失时间之间的矛盾问题和时间‑能耗最优控制的问题,本发明在考虑挠性振动的影响下,根据时间‑能耗最优控制方法,从机动开始时刻,实时算出一条最优角度跟踪轨线以及其对应的最优角速度跟踪轨线,并通过PD控制,使滚动通道的姿态角跟踪算出来的这条角度最优轨线,保证在损失时间较少的同时对转动惯量的拉偏具有较好的鲁棒性,并在考虑时间最优的同时兼顾飞轮的能耗。本发明适用于挠性卫星姿态的机动控制。
-
-
-
-
-
-
-
-
-