一种太阳光谱全吸收碳基功能材料的设计方法

    公开(公告)号:CN111063400B

    公开(公告)日:2020-12-11

    申请号:CN201911309502.1

    申请日:2019-12-18

    Abstract: 本发明是一种太阳光谱全吸收碳基功能材料的设计方法。所述方法为选择碳材料和负载材料基元,构建碳材料和负载材料基元的结构模型,对结构模型进行优化并计算光学性质;以光学响应区间为主要依据筛选功能基元,构造碳基功能材料;通过调节组成和比例,优化稳定性和光学性质,获得太阳光谱全吸收的碳基功能材料。本发明为实验研究提供功能基元和序构等信息,避免大量试错实验造成的成本损失,可应用于光催化、太阳能电池、光热材料、光蒸发水、超黑材料等与光吸收相关的研究和应用领域,以及与精密光学设备、感知等相关的航空航天领域。

    一种铜掺杂二氧化锡催化剂的制备方法及其电催化合成氨的方法

    公开(公告)号:CN113388850B

    公开(公告)日:2022-12-23

    申请号:CN202110545145.X

    申请日:2021-05-19

    Abstract: 一种铜掺杂二氧化锡催化剂的制备方法及其电催化合成氨的方法,属于电催化剂领域。本发明采用低价掺杂构造缺陷以增加材料表面活性位点,从而提高催化活性。制备催化剂方法:将五水合四氯化锡、二水合氯化铜完全溶解在乙醇水溶液中,然后转移至具有聚四氟乙烯内衬的水热罐中,加热反应,自然冷却至室温,离心收集固体产物,洗涤,烘干,得到前驱体;置于马弗炉中,通过程序升温煅烧得到铜掺杂的二氧化锡电催化材料;将铜掺杂二氧化锡作为催化剂应用于电催化合成氨。本发明所发明的催化剂具有较好的催化稳定性。

    一种亚铁氰化物的制备方法及其在液流电池中的应用

    公开(公告)号:CN113415811B

    公开(公告)日:2022-03-25

    申请号:CN202110551822.9

    申请日:2021-05-20

    Abstract: 本发明公开了一种亚铁氰化物的制备方法及其在液流电池中的应用,属于液流电池技术领域。本发明提供的制备方法反应条件温和,且得到的亚铁氰化物纯度高、产率高。本发明通过首先将含有目标产物阳离子的水溶液洗脱阳离子交换树脂制备阳离子交换柱,再将亚铁氰化钾或亚铁氰化钠的水溶液冲洗阳离子交换柱,得到含有亚铁氰根离子的溶液。除去水后,定量获得制备的亚铁氰化物。上述方法制备亚铁氰化物用于制备液流电池用阴极电解液。本发明制备的亚铁氰化物的方法反应条件温和,反应产率高,而且所得到的亚铁氰化物的纯度高,本发明提供的制备方法生产产率均为100%,所制备的亚铁氰化盐的纯度为100%。

    一种适用于光学载荷结构粘接的导热胶膜及其制备方法

    公开(公告)号:CN112251188B

    公开(公告)日:2021-07-20

    申请号:CN202011184410.8

    申请日:2020-10-28

    Abstract: 一种适用于光学载荷结构粘接的导热胶膜及其制备方法;属于航天材料领域。本发明要解决现有改性环氧胶膜存在真空可凝挥发物较高且到导热性差,不能满足高精度、高分辨率卫星光学载荷结构粘接需求的问题。本发明方法:用十二烷胺改性氧化石墨烯,加入到环氧树脂的丙酮溶液中,加热搅拌反应,反应完毕后用过量的二氯甲烷冲洗过滤,得到环氧树脂均匀包覆的DA‑GO;将氰酸酯树脂和聚醚酰亚胺混匀后加热熔融,机械搅拌至均匀状,降温至110~130℃,随后分别加入环氧树脂包覆的DA‑GO和过渡金属盐促进剂,用炼胶机进行机械混炼至均匀相;再压制成膜。本发明胶膜导热性增强,并且具有低可凝挥发特性和良好的粘接性能。

    一种铝硅合金表面高太阳吸收率消杂光膜层的制备方法

    公开(公告)号:CN111254473B

    公开(公告)日:2021-03-26

    申请号:CN202010192975.4

    申请日:2020-03-18

    Abstract: 本发明公开了一种铝硅合金表面高太阳吸收率消杂光膜层的制备方法,属于铝硅合金表面处理领域。本发明解决现有铝硅合金的表面难以成膜的问题。本发明采用浓硝酸与氢氟酸的混合溶液作为铝硅合金的刻蚀液,在室温下利用铝硅合金中对于成膜不利的硅与氢氟酸反应将其除去,同时为防止铝基底与氢氟酸反应造成膜层腐蚀,利用硝酸与铝的反应将其钝化以阻止刻蚀液与铝基底进行反应,然后通过微弧氧化技术在恒流模式下使用双向脉冲电源制备致密光滑、耐蚀性优良的高太阳吸收率膜层。本发明制得的膜层既可作为高太阳吸收率消杂光膜层也可作为有机涂层的基体使用,因此在表面改性领域具有广阔的应用前景。

    一种适用于光学载荷结构粘接的导热胶膜及其制备方法

    公开(公告)号:CN112251188A

    公开(公告)日:2021-01-22

    申请号:CN202011184410.8

    申请日:2020-10-28

    Abstract: 一种适用于光学载荷结构粘接的导热胶膜及其制备方法;属于航天材料领域。本发明要解决现有改性环氧胶膜存在真空可凝挥发物较高且到导热性差,不能满足高精度、高分辨率卫星光学载荷结构粘接需求的问题。本发明方法:用十二烷胺改性氧化石墨烯,加入到环氧树脂的丙酮溶液中,加热搅拌反应,反应完毕后用过量的二氯甲烷冲洗过滤,得到环氧树脂均匀包覆的DA‑GO;将氰酸酯树脂和聚醚酰亚胺混匀后加热熔融,机械搅拌至均匀状,降温至110~130℃,随后分别加入环氧树脂包覆的DA‑GO和过渡金属盐促进剂,用炼胶机进行机械混炼至均匀相;再压制成膜。本发明胶膜导热性增强,并且具有低可凝挥发特性和良好的粘接性能。

    一种氧化石墨烯纳米卷及其复合材料的制备方法

    公开(公告)号:CN111252760B

    公开(公告)日:2021-01-05

    申请号:CN202010073699.X

    申请日:2020-01-22

    Abstract: 一种氧化石墨烯纳米卷及其复合材料的制备方法,属于碳纳米材料制备领域。本发明解决现有的碳纳米卷及复合材料制备方法存在着过程繁琐、效率低、能耗高、工艺复杂和产品单一等缺点。本发明方法:采用液相剥离法和冻干后的制得的氧化石墨烯海绵,超声分散在去离子水中;然后滴到洁净的基底上,再水平放置在连接有真空泵的设备中,在常温的条件下,抽真空使水快速蒸发,即得到氧化石墨烯纳米卷;通过控制氧化石墨烯的浓度,可获得一维或者三维网络结构;通过选择性添加酸化碳纳米管、多种金属盐制备GO‑碳管纳米卷或者GO‑碳管‑金属盐纳米卷复合材料。本发明方法成本较低,操作简单,安全性高,便于大规模制备多种产品,推广和应用。

    一种高导热沥青基碳纤维/氰酸酯复合材料的制备方法

    公开(公告)号:CN111763427A

    公开(公告)日:2020-10-13

    申请号:CN202010581709.0

    申请日:2020-06-23

    Abstract: 本发明公开了一种高导热沥青基碳纤维/氰酸酯复合材料的制备方法,属于导热复合材料技术领域。本发明解决了高导热沥青基碳纤维易产生毛刺、撕裂和分层等现象导致复合材料性能降低的问题。本发明采用原子层沉积技术在高导热沥青基碳纤维表面均匀沉积纳米ZnO薄膜,与氰酸酯树脂固化得到复合材料。本发明具有沉积温度低,厚度均匀可控的优点,能够有效改善高导热沥青基碳纤维易产生毛刺、撕裂和分层等多形态、多尺度损伤的问题,利用ZnO表面丰富的含氧极性基团能够有效改善高导热沥青基碳纤维与氰酸酯树脂基体间的界面结合强度,显著提高复合材料的力学性能和导热性能。

    一种具有光、电、热性能的功能材料基元的筛选方法

    公开(公告)号:CN111062134B

    公开(公告)日:2020-09-25

    申请号:CN201911309514.4

    申请日:2019-12-18

    Abstract: 本发明是一种具有光、电、热性能的功能材料基元的筛选方法。所述方法为确定不同温度下材料基元的晶格的常数;构建材料基元的晶胞模型;对材料基元的光学性质、导热性质和导电性质进行计算,获得材料基元的性能与温度的关系,并构造数据库;根据实际应用需求筛选出具有指定性性能的功能基元;预测材料基元的热稳定性。本发明通过计算温度对晶格参数的影响,获得不同温度下材料体系的结构变化,进而建立温度与材料的结构、性能之间的理论关系,为设计不同温度下具有特殊性能的材料提供重要的理论指导,避免大量的试错实验。该发明可用于光、电、热、光热、光电、热电等材料相关的应用领域以及满足空间极端环境的航空航天方面的相关应用领域。

    一种铝硅合金表面高太阳吸收率消杂光膜层的制备方法

    公开(公告)号:CN111254473A

    公开(公告)日:2020-06-09

    申请号:CN202010192975.4

    申请日:2020-03-18

    Abstract: 本发明公开了一种铝硅合金表面高太阳吸收率消杂光膜层的制备方法,属于铝硅合金表面处理领域。本发明解决现有铝硅合金的表面难以成膜的问题。本发明采用浓硝酸与氢氟酸的混合溶液作为铝硅合金的刻蚀液,在室温下利用铝硅合金中对于成膜不利的硅与氢氟酸反应将其除去,同时为防止铝基底与氢氟酸反应造成膜层腐蚀,利用硝酸与铝的反应将其钝化以阻止刻蚀液与铝基底进行反应,然后通过微弧氧化技术在恒流模式下使用双向脉冲电源制备致密光滑、耐蚀性优良的高太阳吸收率膜层。本发明制得的膜层既可作为高太阳吸收率消杂光膜层也可作为有机涂层的基体使用,因此在表面改性领域具有广阔的应用前景。

Patent Agency Ranking