-
公开(公告)号:CN102141386A
公开(公告)日:2011-08-03
申请号:CN201010611212.5
申请日:2010-12-29
Applicant: 哈尔滨工业大学
IPC: G01B11/26
Abstract: 卫星光通信终端光轴与终端基准面间夹角的测量方法,涉及卫星光通信终端光轴与终端基准面间夹角的测量方法,适用于卫星光通信终端光轴与终端基准面间夹角的测量;为了解决发射光束的精确瞄准,目前无此精度的测量方法问题。它通过如下步骤实现:步骤一,调整平面镜4使其光轴与卫星光通信终端3光轴1重合;步骤二,α1、β1即为卫星光通信终端3光轴1与自准直仪5光轴的夹角;步骤三,调整平行平晶6,使平行平晶6的光轴与平面镜4的光轴重合;步骤四,保证自准直仪5的光轴在测量终端基准面2时与测量卫星光通信终端3光轴1时是相同的;步骤五,可得卫星光通信终端3光轴1和终端基准面2反射光轴间的夹角为步骤六,换算。
-
公开(公告)号:CN101210805B
公开(公告)日:2010-06-16
申请号:CN200710144879.7
申请日:2007-12-20
Applicant: 哈尔滨工业大学
IPC: G01B11/26
Abstract: 基于焦平面成像法的发射模块间同轴度测量方法,本发明涉及测量领域,它解决了不同波段的光束,不能使用同一探测器对出射光束进行探测,更换时要求可对模块间出射的同轴度进行精确测量的问题。步骤如下:首先对800nm波段激光发射模块输出光成像光斑坐标为(x1,y1);其次安装小孔光阑并记录小孔中心位置坐标为(x2,y2);之后1550nm波段CCD探测器定位,并记录小孔中心位置坐标为(x3,y3);接下来对1550nm波段激光发射模块输出光成像进行坐标记录为(x4,y4);最终得出方向角度偏差和俯仰角度偏差分别为α=[(x1-x2)-(x4-x3)]/F,β=[(y1-y2)-(y4-y3)]/F。利用长焦平行光管、不同波段带显微镜头的CCD探测器等器件,基于焦平面成像法可将测量精度提高到0.5μrad以上。
-
公开(公告)号:CN101210806A
公开(公告)日:2008-07-02
申请号:CN200710144880.X
申请日:2007-12-20
Applicant: 哈尔滨工业大学
IPC: G01B11/26
Abstract: 基于辅助光源的激光发射轴与机械基准面同轴度测量方法。本发明涉及测量领域,它解决了在光束发散角小、指向控制精度要求高的光学测试系统中,激光发射轴与机械基准面的夹角需要严格测出,目前并无方法对其进行测量的问题。步骤如下:首先探测被测激光发射系统出射光斑;其次安装小孔光阑;之后安装辅助光源进行反射光斑的探测;最终得出方向角度偏差和俯仰角度偏差。基于辅助光源及分光系统,利用焦平面成像法将测量精度提高到0.1μrad以上,同时最小测量范围不受成像光斑大小的限制。
-
公开(公告)号:CN103399407B
公开(公告)日:2015-04-22
申请号:CN201310351281.0
申请日:2013-08-13
Applicant: 哈尔滨工业大学
IPC: G02B27/09 , H04B10/118
Abstract: 一种用于实现圆形光束整形为点环形光束的方法,本发明涉及非成像光学领域。本发明是要降低卫星光通信终端接收系统的装调复杂度,简化终端光学系统结构。(1)确定入射光束的直径D0;(2)确定通信光束的口径D;(3)建立通信光束的一一对应关系;(4)计算通信光束的光线偏角;(5)确定复合功能元件通信部分的径向相位分布表达式;(6)确定复合功能元件通信部分的径向轮廓;(7)建立跟踪光束的一一对应关系;(8)计算通信光束的光线偏角;(9)确定复合功能元件跟踪部分的径向相位分布表达式;(10)确定复合功能元件跟踪部分的径向轮廓。本发明应用于成像光学领域。
-
公开(公告)号:CN103558669A
公开(公告)日:2014-02-05
申请号:CN201310572196.7
申请日:2013-11-15
Applicant: 哈尔滨工业大学
Abstract: 白光通信中反馈式光源对准控制装置,本发明涉及的是白光通信中的光源对准技术领域,具体是一种反馈式光源对准控制装置。本发明是要解决因接收端相对通信光源的移动无法对准通信光源而导致通信误码率增大的问题,而提供了白光通信中反馈式光源对准控制装置。白光通信中反馈式光源对准控制装置包括通信光源(1)、二维摆镜(2)、透镜(3)、面阵探测器(4)、图像采集卡(5)、处理器(6)、摆镜驱动器(7)与A/D转换器(8)。本发明应用于白光通信的光源对准技术领域。
-
公开(公告)号:CN103399408A
公开(公告)日:2013-11-20
申请号:CN201310351282.5
申请日:2013-08-13
Applicant: 哈尔滨工业大学
IPC: G02B27/09
Abstract: 一种用于实现高斯光束整形为平顶光束的方法,本发明涉及非成像光学领域,尤其涉及一种用于将高斯光束整形为平顶光束的方法。本发明是要解决全局算法计算时间长,局部算法初始相位的设定对结果影响很大的问题,而提供了一种用于实现高斯光束整形为平顶光束的方法。(1)确定高斯光束的直径D1,平顶光束的直径D2,以及两个光学元件的间距L;(2)根据能量守恒计算平顶光束的光强;(3)根据光线追迹建立一一对应关系;(4)计算光线偏角;(5)确定整形元件的初始相位分布;(6)确定相位校正元件的初始相位分布;(7)局部算法优化计算相位分布。本发明应用于非成像光学领域。
-
公开(公告)号:CN102095403A
公开(公告)日:2011-06-15
申请号:CN201010611155.0
申请日:2010-12-29
Applicant: 哈尔滨工业大学
IPC: G01C1/00
Abstract: 基于变焦成像透镜组的变视域高精度信号光入射角度探测系统及信号光入射角度探测方法,涉及一种变视域高精度入射光角度探测系统及探测方法。它解决了现有探测系统在瞄准、捕获、跟踪过程中视域固定、精度固定的问题,既满足了系统在瞄准、捕获过程中大视域的要求,也满足了系统在跟踪过程中高探测精度的要求。其系统:望远物镜将信号光聚焦至目镜,经目镜透射至精瞄镜,透射光经精瞄镜反射至变焦成像透镜组,并经变焦成像透镜组聚焦至CCD探测器的探测面。其方法:跟瞄控制系统调整变焦成像透镜组的焦距为fl,实现对信号光的瞄准和捕获;调整焦距为β·fl,实现对入射光的跟踪;从而实现对信号光的入射角度的探测。本发明适用于对信号光入射角度的探测。
-
公开(公告)号:CN102095390A
公开(公告)日:2011-06-15
申请号:CN201010611215.9
申请日:2010-12-29
Applicant: 哈尔滨工业大学
IPC: G01B11/26
Abstract: 空间光通信终端光轴与其定位研磨面夹角的精确测量方法,本发明涉及空间光通信终端光轴与其端面上的定位研磨面间夹角的测量方法。用于测量。它克服了机械转台旋转因素对测量带来的影响。通过下述步骤实现:在干涉仪前放置平面镜,调整使平面镜的光轴与干涉仪光轴平行;在干涉仪和平面镜之间放入空间光通信终端,调整使光轴与平面镜的光轴平行;在干涉仪和空间光通信终端间放置自准直仪,测量空间光通信终端端面上的定位研磨面反射光轴与自准直仪光轴间的夹角;移走空间光通信终端,测量平面镜光轴与自准直仪光轴的夹角;根据定位研磨面反射光轴与自准直仪光轴间的夹角和空间光通信终端光轴与自准直仪光轴的夹角,得终端光轴与其定位研磨面的夹角。
-
公开(公告)号:CN101210806B
公开(公告)日:2010-04-21
申请号:CN200710144880.X
申请日:2007-12-20
Applicant: 哈尔滨工业大学
IPC: G01B11/26
Abstract: 基于辅助光源的激光发射轴与机械基准面法线沿方位轴方向角度偏差及俯仰角度偏差的测量方法。本发明涉及测量领域,它解决了在光束发散角小、指向控制精度要求高的光学测试系统中,激光发射轴与机械基准面的夹角需要严格测出,目前并无方法对其进行测量的问题。步骤如下:首先探测被测激光发射系统出射光斑;其次安装小孔光阑;之后安装辅助光源进行反射光斑的探测;最终得出方向角度偏差和俯仰角度偏差。基于辅助光源及分光系统,利用焦平面成像法将测量精度提高到0.1μrad以上,同时最小测量范围不受成像光斑大小的限制。
-
公开(公告)号:CN101672726A
公开(公告)日:2010-03-17
申请号:CN200910308295.8
申请日:2009-10-15
Applicant: 哈尔滨工业大学
IPC: G01M11/02
Abstract: 空间光通信终端通信探测器定位测试装置及方法,它涉及空间光通信领域。它解决了现有技术中无法对空间光通信终端通信探测器安装位置进行精确测量的问题,本发明的测试装置包括具有调制激光频率、波长或强度功能的激光器(1)、长焦平行光管(3)、二维转台(5)、平面镜(6)、自准直仪(7)和误码率分析仪(8);本发明的测试方法基于自准直仪(7)实现在空间光通信终端研制过程中对其通信探测器(4-2)的安装位置进行精确测量,确定了通信探测器(4-2)中心相对其成像透镜组(4-1)焦点的偏移量。本发明为对空间光通信终端通信探测器位置进行精确调整提供了重要参考价值。
-
-
-
-
-
-
-
-
-