-
公开(公告)号:CN111307107A
公开(公告)日:2020-06-19
申请号:CN202010122016.5
申请日:2020-02-27
Applicant: 吉林大学
IPC: G01B21/32
Abstract: 本发明提供一种效果可视化的仿生超敏应变传感器及其制备方法,该应变传感器包括由上而下依次设置的热致变色层、导电功能层以及用于应变感知的裂缝结构层;其中热致变色层具有规则排布的孔洞结构;裂缝结构层的上表面具有规则有序的裂缝阵列结构,裂缝结构层的上表面为裂缝结构层靠近导电功能层一侧的表面;导电功能层具有两个电极,分别设置在导电功能层的两端。本发明利用裂缝结构层的裂缝侧壁在变形过程中重复张开-闭合,实现灵敏感知外界微小应变,极大地提高应变感知灵敏度和柔性,克服传统刚性传感器存在的疏察问题,当仿生超敏应变传感器发生形变后,通过焦耳热改变温度,使得热致变色层颜色发生改变,实现应变效果可视化。
-
公开(公告)号:CN110093021A
公开(公告)日:2019-08-06
申请号:CN201910427287.9
申请日:2019-05-22
Applicant: 吉林大学
Abstract: 本发明公开了一种聚乳酸改性形状记忆智能变形材料及其制备方法,该方法是基于模具所具有的结构设计便利性和材料成型高效性,以聚乳酸为形状记忆智能变形主体材料,以颗粒状聚醚醚酮为性能增强改性材料,以二氯甲烷为溶剂,通过逐层堆叠控制样件形状与尺寸,得到该材料。本发明通过调整成型过程中不同层间聚醚醚酮含量变化,有效控制聚乳酸基体材料的形状记忆智能变形行为与力学强度,从而实现对聚乳酸力学强度低与变形能力差的改进。本发明所制备出的聚乳酸改性形状记忆智能变形材料不仅展现出良好的变形功能和力学强度,而且质量轻、生产成本低、制备过程简单、适用范围广。
-
公开(公告)号:CN110039768A
公开(公告)日:2019-07-23
申请号:CN201910474832.X
申请日:2019-06-03
Applicant: 吉林大学
IPC: B29C64/118 , B29C64/379 , B29C64/393 , B33Y30/00 , B33Y50/02
Abstract: 本发明公开了一种自适应预防样件翘曲变形的3D打印方法,即首先根据材料本身的热特性设置打印设备相关温度;然后对样件的三维模型进行应力分析,根据所得应力云图及几何模型进行切片处理,得到相关截面信息,包括截面几何形状、打印头自适应移动路径和打印头动态移动速度;最后根据相关信息进行三维成型并进行后处理,本发明中3D打印热塑性塑料预防样件翘曲变形效果显著,且不影响样件的成型速度。
-
公开(公告)号:CN109648817A
公开(公告)日:2019-04-19
申请号:CN201811521707.1
申请日:2018-12-13
Applicant: 吉林大学
IPC: B29C48/05 , B29C48/92 , B29C48/30 , B29C64/118 , B29C64/393 , C08L61/16 , C08K7/06 , B33Y10/00 , B33Y70/00 , B33Y50/02 , B29K71/00 , B29K503/04
CPC classification number: B29C64/118 , B29C64/393 , B29K2071/00 , B29K2503/04 , B33Y10/00 , B33Y50/02 , B33Y70/00 , C08K7/06 , C08L61/16
Abstract: 本发明涉及一种3D打印智能变形材料的制备方法,目的是可打印梯度结构、生物结构、螺旋结构和微观结构等复杂不规则形状,精确高效、简单易行,制备一种具有复杂结构与大变形的3D打印智能变形材料。包括以下步骤:第一步、聚合物丝材的制备,第二步、智能变形材料的3D打印,本发明是基于3D打印技术,以聚醚醚酮粉末和碳纤维为主体材料。通过控制设计3D打印过程中打印的形状,可编程路径,改变层间的交叉角度,可以使预变形结构更加复杂多样,平行于打印路径也可以助益其变形,可以获得更大的变形和变形恢复率。这种制备方法简化了加工步骤,节省生产成本,提高了加工效率。
-
公开(公告)号:CN108247056A
公开(公告)日:2018-07-06
申请号:CN201810176392.5
申请日:2018-03-03
Applicant: 吉林大学
Abstract: 一种对送粉式激光增材制造制件同步改性的方法,该方法是在激光增材制造制件加工过程中增加同步跟随滚压工艺,包括:选择合适的滚压轮尺寸;对实现滚压功能的滚轮高度进行校准;对校准好高度的滚压轮,根据制件所需达到滚压加工效果判别滚压力大小范围,进而调整滚压轮的进给量;3D打印喷头按照打印路径在打印基板上运行;打印过程中可根据当前制件加工的相对高度,调整滚压力大小;对完成滚压力大小调整的滚压轮,进行同步跟随滚压工作;打印层逐层叠加,冷却后形成金属制件。该方法能够不改变工件的形状,而使金属制件内在质量及内部的组织结构得到改善,增加了制件致密性,提高了制件强度。
-
公开(公告)号:CN105729806B
公开(公告)日:2018-03-20
申请号:CN201610199410.2
申请日:2016-04-03
Applicant: 吉林大学
IPC: B29C64/20 , B29C64/205 , B29C64/214 , B33Y30/00 , B33Y40/00 , B33Y10/00
Abstract: 本发明公开了一种用于粉末层叠制造的3D打印装置及3D打印方法,装置包括有粉末床、机架、铺粉仓、刮刀和加工装置构成,铺粉仓、刮刀和加工装置布设在机架上,粉末床能在机架上左右移动;刮刀位于粉末床上方;用于铺粉的材料颗粒为具有一定长度的片状或柱状粒子,这些粒子在受到刮刀的铺平作用后,可以产生一种定向的诱导作用,使得这些粒子在刮刀进给方向上定向排列,使其具备某些特殊的优良性能;粉末床可以沿其轴心旋转任意角度,通过控制旋转角度的不同,可以改变成型件相对刮刀的进给方向的不同,既可以控制不同层粒子的不同排列方向,也可以实现单层粒子不同区域排布方向的多样性,然后通过激光烧结或者粘结剂粘结等方式实现粉末层叠制造。
-
公开(公告)号:CN105538747B
公开(公告)日:2018-01-09
申请号:CN201510922084.9
申请日:2015-12-13
Applicant: 吉林大学
Abstract: 本发明公开了一种纤维增强聚合物基复合材料T型接头及其制作方法,T型接头是由垂直腹板、仿生过渡圆角区和下壁板组成,仿生过渡圆角区两端分别固定连接垂直腹板和下壁板。本发明采用具有多功能的仿生过渡圆角区来连接垂直腹板和下壁板,提高了T型接头的抗拉性能和抗弯性能,具有良好的韧性和损伤容限,缓解了应力集中效应,复合材料单元节在仿生过渡圆角区域内形成的错位结构,可以有效的阻碍裂纹的扩展,提高了连接部位的损伤容限,降低了T型接头发生灾难性结构破坏的风险。
-
公开(公告)号:CN105584045B
公开(公告)日:2017-11-17
申请号:CN201510990147.4
申请日:2015-12-25
Applicant: 吉林大学
IPC: B29C67/00
Abstract: 本发明公开了一种多材料零件3D打印装置及其打印方法,本装置是由支架装置、可控搅拌挤出头装置、数个数字化材料供应系统、工作平台和控制器组成,可控搅拌挤出头和控制器固定设置在支架装置上,数字化材料供应系统固定设置在数个可控搅拌挤出头下方,工作平台设置在支架装置内;打印方法依次为:混合浆料的配制,数据建模处理,多材料打印成型,将坯体内的高分子粘结剂进行脱除,烧结;本发明通过数个数字化材料供应系统控制各种材料的进给量,进而控制混合材料的成分比例,使其随着空间位置的不同材料的成分及比例不同,脱脂烧结后可得到随着位置不同材料组分不断变化的零件,工艺简单,成本低,节省材料。
-
公开(公告)号:CN105846715B
公开(公告)日:2017-10-27
申请号:CN201610422406.8
申请日:2016-06-12
Applicant: 吉林大学
Abstract: 本发明涉及一种变阻尼压电驱动电机,包括旋转台、压电振子、底座和复合悬臂,其中旋转台包括旋转轴和旋转圆盘,压电振子的两端分别固定连接在旋转圆盘和复合悬臂上,压电振子与旋转圆盘的下表面垂直,所述压电陶瓷和弹性基板的粘接面沿所述旋转圆盘直径布置,复合悬臂为薄片型结构且由低摩擦弹性材料和高摩擦弹性材料层合构成,低摩擦弹性材料和高摩擦弹性材料都为薄片型结构且尺寸相同,低摩擦弹性材料的摩擦系数小于高摩擦弹性材料的摩擦系数,低摩擦弹性材料和高摩擦弹性材料的层合面与压电陶瓷和弹性基板的粘接面平行,旋转轴和底座构成转动副,本发明具有使用寿命长、精度要求低等优点。
-
公开(公告)号:CN105915105B
公开(公告)日:2017-10-24
申请号:CN201610422408.7
申请日:2016-06-12
Applicant: 吉林大学
Abstract: 本发明涉及一种惯性压电驱动器,包括压电振子、质量块、基座和复合悬臂,所述压电振子两端分别固定连接在所述质量块和所述基座上,所述复合悬臂为薄片型结构且由高摩擦弹性材料和低摩擦弹性材料层合构成,所述高摩擦弹性材料的摩擦系数大于所述低摩擦弹性材料的摩擦系数,四个所述复合悬臂布置在基座下表面,压电陶瓷和弹性基板的粘接面与所述基座上表面垂直,所述弹性基板和基座上表面的交线与所述高摩擦弹性材料和低摩擦弹性材料的层合面平行,利用惯性力和复合悬臂两种材料的不同摩擦系数使驱动器产生向前运动,作为一种简单压电驱动装置,可以应用在软体机器人、探测救援、生物医疗等领域,具有结构简单、体积小、适用性强等优点。
-
-
-
-
-
-
-
-
-