-
公开(公告)号:CN115307656B
公开(公告)日:2025-03-07
申请号:CN202210854592.8
申请日:2022-07-15
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01C25/00
Abstract: 本发明涉及一种星敏感器测角精度补偿方法,包括:确定星敏感器测角误差的产生机理,根据所述的机理建立高动态星敏感器测角精度误差模型;所述星敏感器测角误差的产生机理是由于星点能量中心与时间中心不匹配;在飞行任务中采用惯导测量数据解算载体角动态信息;通过上述求解的载体角动态信息结合建立的高动态星敏感器测角精度误差模型,在线计算出动态引起的星敏感器测角误差;利用上述计算的动态引起的星敏感器测角误差对星敏感器输出的姿态角进行补偿。
-
公开(公告)号:CN112904888B
公开(公告)日:2024-04-09
申请号:CN202110029114.9
申请日:2021-01-11
Applicant: 北京临近空间飞行器系统工程研究所
Inventor: 巩英辉 , 陈志刚 , 张敏刚 , 姜智超 , 闫颖鑫 , 谢佳 , 郭振西 , 陈芳 , 唐毛 , 张箭飞 , 余颖 , 季登高 , 武斌 , 韩伯雄 , 孙晓松 , 张宁宁 , 刘秀明 , 刘辉 , 杨丁 , 余亚晖 , 付秋军 , 徐春铃 , 曹轶 , 杨缙 , 王锦涛
IPC: G05D1/46 , G05D109/28
Abstract: 本发明提供一种多目标参数联合制导的方法,包括:根据起始点的纵程、高度、速度和目标点的纵程、高度、速度、弹道倾角,曲线拟合计算速度‑纵程剖面、高度‑纵程剖面和弹道倾角‑纵程剖面。求导计算速度‑纵程导数剖面值、弹道倾角‑纵程导数剖面值,根据所述速度‑纵程导数剖面值与弹道倾角计算阻力系数;根据所述阻力系数计算前馈攻角,根据当前速度与速度‑纵程剖面值计算反馈攻角;根据前馈攻角和反馈攻角得到总攻角;速度‑纵程导数剖面值和当前速度值计算前馈法向过载,根据当前高度、高度‑纵程剖面值、当前弹道倾角与弹道倾角‑纵程剖面值计算反馈法向过载,根据前馈法向过载和反馈法向过载计算第一倾侧角。
-
公开(公告)号:CN113984069B
公开(公告)日:2023-06-06
申请号:CN202110484592.9
申请日:2021-04-30
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明涉及基于人造卫星的星光定位导航方法,首先采用星敏感器观测空间中三颗卫星,根据卫星星历获得所观测三颗卫星的位置坐标,并计算任意两颗卫星的相对距离;采用星敏感器测量三颗卫星相对星敏感器的单位方向矢量,并计算任意两颗卫星相对星敏感器的张角;计算星敏感器与每颗卫星之间的相对距离;根据三颗卫星位置坐标以及星敏感器与每颗卫星之间的相对距离,计算出星敏感器位置,即实现了飞行器的自主定位。本发明将星敏感器功能进行扩展,在传统实现自主定姿的基础上,实现了自主定位,不增加额外设备,不占用额外空间,具有很高的经济性。
-
公开(公告)号:CN115307656A
公开(公告)日:2022-11-08
申请号:CN202210854592.8
申请日:2022-07-15
Applicant: 北京临近空间飞行器系统工程研究所
IPC: G01C25/00
Abstract: 本发明涉及一种星敏感器测角精度补偿方法,包括:确定星敏感器测角误差的产生机理,根据所述的机理建立高动态星敏感器测角精度误差模型;所述星敏感器测角误差的产生机理是由于星点能量中心与时间中心不匹配;在飞行任务中采用惯导测量数据解算载体角动态信息;通过上述求解的载体角动态信息结合建立的高动态星敏感器测角精度误差模型,在线计算出动态引起的星敏感器测角误差;利用上述计算的动态引起的星敏感器测角误差对星敏感器输出的姿态角进行补偿。
-
公开(公告)号:CN113375634A
公开(公告)日:2021-09-10
申请号:CN202110484593.3
申请日:2021-04-30
Applicant: 北京临近空间飞行器系统工程研究所
Abstract: 本发明涉及一种基于大气模型和飞行器法向过载组合的高度测量方法,使用飞行器惯性导航系统测量获得的攻角信息、法向过载信息,基于飞行器法向气动力模型准确性高、且攻角受风影响小和海拔高度与大气密度相关这一本质规律,采用数学方法,利用模型和测量到的速度、法向过载信息,获得飞行器的海拔高度。通过无迹卡尔曼滤波技术对数据进行融合,获得精确的飞行器组合导航海拔高度。相对雷达高度表的方法,能够节省几百万元的成本,节省数十公斤的重量,节约飞行器上的空间。
-
公开(公告)号:CN103744014B
公开(公告)日:2016-07-06
申请号:CN201310724722.7
申请日:2013-12-24
Applicant: 北京微电子技术研究所 , 中国运载火箭技术研究院
IPC: G01R31/3181
Abstract: 本发明提供了一种SRAM型FPGA单粒子辐照试验测试系统及方法,该试验系统包括上位机、电流监测采集板和测试板;电流监控采集板包括电流监控采集FPGA、电流采集单元、供电模块和第一通信接口;测试板包括控制处理FPGA、刷新芯片、SRAM、配置PROM、存储PROM、第二通信接口及被测FPGA;上位机负责流程控制和数据处理;电流监控采集板负责测试板的上电、断电和监测测试FPGA电流;测试板负责处理上位机发送的命令并进行单粒子翻转、单粒子功能中断检测等工作。本发明使用刷新芯片代替现有辐照试验系统中的部分重配模块,可以更方便可靠地对被测芯片进行刷新;且本发明能够实现对触发器进行静态和动态翻转测试,结合两种方法可以得到更可靠的触发器翻转数据。
-
公开(公告)号:CN105806998A
公开(公告)日:2016-07-27
申请号:CN201410852994.X
申请日:2014-12-31
Applicant: 中国运载火箭技术研究院
IPC: G01N33/00
Abstract: 本发明属于晶体管可靠性验证技术领域,具体涉及一种高可靠晶体管结构分析方法;首先,对于应用于航天型号的晶体管产品、其结构往往是非常复杂的,要了解和掌握这种结构复杂的产品,就必须进行结构单元的分解,根据影响晶体管的固有质量和可靠性的程度,给出各结构单元对应的结构要素;其次,通过各个单元已辨识的结构要素,依据GJB548B-2005标准,选择每种结构要素的评价试验方法;该方法对于晶体管使用方而言,该方法可以衡量和比较晶体管的质量和可靠性,发现潜在的失效机制,避免使用存在隐患的晶体管、避免使用由于晶体管固有可靠性问题导致的整机失效而带来的损失;对于晶体管制造方而言,通过该方法监控其生产工艺,找到引起晶体管潜在失效的工艺。
-
公开(公告)号:CN103592035B
公开(公告)日:2016-08-17
申请号:CN201310553201.X
申请日:2013-11-08
Applicant: 中国运载火箭技术研究院 , 中国兵器工业集团第二一一研究所
Abstract: 本发明属于红外探测器领域,具体涉及一种红外焦平面探测器组件剂量率试验方法。目的是对组件进行有效的剂量率辐射试验。该试验方法,包括如下步骤:组件敏感部位分析;预定剂量率并进行累积总剂量评估;选择合格的组件样品,进行光电性能测试;调试试验测试系统并粘贴剂量片;按预设剂量率对某个敏感部位进行辐照,测试工作电流、温度、输出波形;保持组件偏置状态,按先后顺序记录组件试验前、中、后三个时刻点的工作电流、工作温度和输出波形;获得辐照后器件的恢复时间;判断组件功能是否正常及是否为有效炮。该方法克服了剂量率辐射场有效区域的限制,避免了因辐照试验条件的不足,如辐射源有效辐射范围小或辐射剂量率不足够高等问题。
-
公开(公告)号:CN107290689A
公开(公告)日:2017-10-24
申请号:CN201610223788.1
申请日:2016-04-12
Applicant: 中国运载火箭技术研究院 , 中国电子科技集团公司第二十四研究所
IPC: G01R31/40
CPC classification number: G01R31/40
Abstract: DC/DC变换器总剂量效应试验的自动测试系统,包括数据采集控制单元、电阻负载矩阵单元、嵌入式软件8,其中数据采集控制单元包括键盘1、显示屏2、控制器3、数据存储器4、电压传感器5、电流传感器6、温度传感器7,其中电压传感器5、电流传感器6、温度传感器7连接到控制器3,并将检测量转换为电压,输出到控制器3;键盘1、显示屏2连接到控制器3,控制器3将键盘1输入信号进行处理后,输出到显示屏2;数据存储器连接到控制器3,控制器3将电压传感器5、电流传感器6、温度传感器7实时采集到的数据进行处理后,存储在数据存储器4内。电压传感器5、电流传感器6、温度传感器7用来采集DC/DC变换器的输入输出信号和温度信息。
-
公开(公告)号:CN105806998B
公开(公告)日:2017-10-03
申请号:CN201410852994.X
申请日:2014-12-31
Applicant: 中国运载火箭技术研究院
IPC: G01N33/00
Abstract: 本发明属于晶体管可靠性验证技术领域,具体涉及一种高可靠晶体管结构分析方法;首先,对于应用于航天型号的晶体管产品、其结构往往是非常复杂的,要了解和掌握这种结构复杂的产品,就必须进行结构单元的分解,根据影响晶体管的固有质量和可靠性的程度,给出各结构单元对应的结构要素;其次,通过各个单元已辨识的结构要素,依据GJB548B‑2005标准,选择每种结构要素的评价试验方法;该方法对于晶体管使用方而言,该方法可以衡量和比较晶体管的质量和可靠性,发现潜在的失效机制,避免使用存在隐患的晶体管、避免使用由于晶体管固有可靠性问题导致的整机失效而带来的损失;对于晶体管制造方而言,通过该方法监控其生产工艺,找到引起晶体管潜在失效的工艺。
-
-
-
-
-
-
-
-
-