一种基于斩波技术消除电极间直流偏移的方法及系统

    公开(公告)号:CN114533087A

    公开(公告)日:2022-05-27

    申请号:CN202210455681.5

    申请日:2022-04-28

    Abstract: 本发明公开了一种基于斩波技术消除电极间直流偏移的方法及系统,包括以下步骤:步骤S1:输出斩波调制后的脑电信号和电极间直流偏移信号;步骤S2:输出电极间直流偏移电流;步骤S3:提取积分直流偏移信号;步骤S5:所述脑电信号进入芯片放大模块进行放大处理,解调制,并返回至原始的脑电信号频段,得到原始的脑电信号;步骤S6:所述原始的脑电信号经过低通滤波器滤波得到滤除噪声的脑电信号;步骤S7:将所述滤除噪声的脑电信号传入数模转换器转换为数字信号。本发明有效抑制了电极间直流偏移,相比传统的直流伺服回路减小了过程延时,同时,电路中输入电容与前馈电容容值相同,可采用ABBA式版图排列方式,有效避免了芯片制作时的工艺误差。

    一种功能蛋白质挖掘和筛选方法及装置

    公开(公告)号:CN119517171A

    公开(公告)日:2025-02-25

    申请号:CN202510081736.4

    申请日:2025-01-20

    Abstract: 本发明公开了一种功能蛋白质挖掘和筛选方法及装置,将蛋白结构预测、蛋白质功能注释、蛋白簇挖掘等多维度的生物信息学分析与基于蛋白质大语言的人工智能方法结合起来,构建了一个针对功能蛋白的挖掘和筛选的流程。引入蛋白质的结构分析,利用蛋白质结构与功能的关联,通过构建结构相似性图谱,发掘功能相近的蛋白。蛋白质大语言模型能够包含蛋白结构,翻译后修饰和生物物理学特性等与蛋白质功能相关的特征参数,并以向量矩阵的形式揭示蛋白内在的功能关联性。通过引入这两种分析手段,并结合传统的基于序列的蛋白质功能注释的方法,使得序列相似性和亲缘度更低,但是拥有相应功能的蛋白被挖掘和筛选出来,从而能够更加高效精准地利用生物大分子。

    一种基于有监督对比学习的EEG信号分类方法、装置

    公开(公告)号:CN117056788A

    公开(公告)日:2023-11-14

    申请号:CN202311315334.3

    申请日:2023-10-12

    Abstract: 本发明公开了一种基于有监督对比学习的EEG信号分类方法、装置,包括:将EEG信号输入至预先训练的特征提取模型中,得到EEG特征;通过分类器对EEG特征进行分类;其中,特征提取模型的训练过程包括:获取有标签的EEG数据集;截取EEG数据,拥有相同标签的EEG数据样本互为正样本,不同标签的EEG数据样本互为负样本;基于滑动窗对截取的EEG数据样本进行数据增强,得到增强样本;将截取的EEG数据样本和增强样本作为训练集;利用训练集训练特征提取模型,设置损失函数,损失函数用于使负样本特征向量之间的距离逐渐增大,正样本特征向量之间的距离逐渐减小,增强样本特征向量与正样本特征向量之间的距离逐渐减小。

    一种基于脑机接口的数据筛选和模型训练方法及装置

    公开(公告)号:CN116595456A

    公开(公告)日:2023-08-15

    申请号:CN202310665531.1

    申请日:2023-06-06

    Abstract: 本说明书公开了一种基于脑机接口的数据筛选和模型训练方法及装置,可以获取预训练脑电样本数据,预训练脑电样本数据包括若干类别下的脑电样本。而后,可以针对每个类别,根据该类别下的预训练脑电样本数据,确定该类别下的脑电信号所对应的概率分布,进而,根据各类别下的脑电信号所对应的概率分布,构建高斯混合模型,并根据高斯分布模型,确定出每一类别的脑电样本数据对应的聚类范围,而后,确定候选脑电样本数据是否落入到标注对应类别的聚类范围中,若是,将候选脑电样本数据加入到训练样本数据集中,最后,根据训练样本数据集训练脑电分类模型,提高了筛选出的训练样本和训练出的模型的准确性,提升了脑机接口系统的性能和稳定性。

    一种基于皮质-肌肉-皮质网络图的模型训练方法及装置

    公开(公告)号:CN116153522A

    公开(公告)日:2023-05-23

    申请号:CN202310204621.0

    申请日:2023-03-02

    Abstract: 本说明书公开了一种基于皮质‑肌肉‑皮质网络图的模型训练方法及装置,可以获取采集到的通过TMS治疗前患者在设定时间内运动过程中的EEG和EMG,以及获取采集到的通过TMS治疗后患者在设定时间内运动过程中的EEG和EMG;而后,可以构建治疗前皮质‑肌肉‑皮质网络图以及构建治疗后皮质‑肌肉‑皮质网络图,皮质‑肌肉‑皮质网络图用于表征大脑和手臂上的各采集点位之间的功能连通性。进而可以根据皮质‑肌肉‑皮质网络图以及实际治疗评估信息,对预测模型进行训练,得到训练后的预测模型,以通过训练后的预测模型预测出目标患者的TMS治疗评估信息并在目标医疗设备上进行展示,以提高对患者TMS治疗效果的评估效率和准确性。

    一种可穿戴式心电图无线采集方法及装置

    公开(公告)号:CN115349864A

    公开(公告)日:2022-11-18

    申请号:CN202211276622.8

    申请日:2022-10-19

    Abstract: 本发明公开了一种可穿戴式心电图无线采集方法及装置,包括主动电极,所述主动电极包括印刷电路板、采集芯片、供电模块、参考电极、采集电极和接地电极,所述印刷电路板的正面设置所述采集芯片和所述供电模块,所述印刷电路板的反面位于同一直线上等距离依次设置所述参考电极、所述采集电极和所述接地电极,若干个所述主动电极基于心电图采集标准导联中胸导联位置依次排列。本发明将参考电极、采集电极与接地电极集成在同一个可穿戴主动电极采集心电图信号,同时经多个主动电极指向的方向定位出信号参考基准点,根据主动电极与信号参考基准点的距离作为参数对采集到的心电信号进行重建使其恢复为与有线采集的心电图信号同样大小的幅值与形状。

    一种应用于脑机接口的同步采集与传输的方法及系统

    公开(公告)号:CN114647320B

    公开(公告)日:2022-09-16

    申请号:CN202210565749.5

    申请日:2022-05-24

    Abstract: 本发明公开了一种应用于脑机接口的同步采集与传输的方法及系统,步骤S1:采集到的输入信号通过信号放大通路的输入端传输至信号放大模块,进行放大处理,得到放大的脑电信号;步骤S2:采集到的输入信号通过共模平均耦合通路的输入端传输至共模平均单元,耦合至接地端和电源端;步骤S3:将所述放大的脑电信号传输至信号转换及传输模块进行转换,传输至用户电极;步骤S4:通过所述用户电极将转换后的数字信号传输至信号接收及处理模块;本发明通过射频生物无线传播技术,实现信号的自动加密、提高传输的安全性,降低线路的复杂性、提高用户舒适度,同时实现低功耗的无线传输,适用于可穿戴脑电采集系统。

    一种频率调制的脑机接口芯片输入阻抗增强方法及系统

    公开(公告)号:CN115005842A

    公开(公告)日:2022-09-06

    申请号:CN202210947840.3

    申请日:2022-08-09

    Abstract: 本发明公开了一种频率调制的脑机接口芯片输入阻抗增强方法及系统,包括以下步骤:步骤S1:通过改变频率调节通路的控制电压,校准,将校准后得到的频率设置为工作频率;步骤S2:将采集到的脑电信号进行斩波调制,得到斩波调制脑电信号;步骤S3:通过芯片放大器模块将所述斩波调制脑电信号进行放大处理,得到放大脑电信号;步骤S4:将所述放大脑电信号进行信号解调,得到原始脑电信号;步骤S5:所述原始脑电信号通过低通滤波器得到脑电模拟信号;步骤S6:通过模数转换器将脑电模拟信号转换为离散的数字信号。本发明通过微调斩波频率,控制输入电流,使得输入端的输入阻抗最大化,克服了工艺误差,解决精准匹配问题,适用于可穿戴脑电采集系统。

    一种基于同步采样的斩波噪声消除方法及系统

    公开(公告)号:CN118171045A

    公开(公告)日:2024-06-11

    申请号:CN202410364271.9

    申请日:2024-03-28

    Abstract: 本发明涉及一种基于同步采样的斩波噪声消除方法及系统,该方法包括:基于系统时钟信号,通过分频处理,得到同步的第一时钟信号和第二时钟信号;根据第一时钟信号,针对脑电采集设备采集的信号进行斩波调制,输出得到脑电信号;根据第一时钟信号,对脑电信号进行放大处理后再进行斩波解调制,并返回至原始的脑电信号频段,得到放大脑电信号;根据第二时钟信号,通过模数转换对放大脑电信号进行采样,并转换为离散数字信号输出,得到清晰且没有噪声点的脑电信号。与现有技术相比,本发明能够有效消除脑电信号通过斩波放大器带来的斩波噪声的影响,提高信号的实时性和精度,节省硬件使用面积、功耗和硬件冗余,同时减少对计算能力和存储资源的需求。

    电极及其制备方法和应用
    30.
    发明授权

    公开(公告)号:CN117224129B

    公开(公告)日:2024-03-26

    申请号:CN202311522719.7

    申请日:2023-11-15

    Abstract: 本发明涉及一种电极及其制备方法和应用。电极包括第一水凝胶层、第二水凝胶层和电子导电层,所述第二水凝胶层与电子导电层层叠设置形成复合层,所述第一水凝胶层包裹所述复合层;其中,所述第一水凝胶层包括第一水凝胶基体以及填充于所述第一水凝胶基体中的第一电解液,所述第一水凝胶基体由高分子共聚物、海藻酸钠、明胶和壳寡糖通过分子链交织形成,所述高分子共聚物选自丙烯酸‑异丙基丙烯酰胺共聚物和/或丙烯酰胺‑异丙基丙烯酰胺共聚物。本发明的电极不但具有优异的柔性,可长时间缓释电解液和高电子导电率,同时还有优异的粘弹性和粘性可调性,进而在用于检测运动状态下的脑电信号时,可显著降低运动伪影,提高脑电信号的质量。

Patent Agency Ranking