-
公开(公告)号:CN117224129B
公开(公告)日:2024-03-26
申请号:CN202311522719.7
申请日:2023-11-15
Applicant: 之江实验室
Abstract: 本发明涉及一种电极及其制备方法和应用。电极包括第一水凝胶层、第二水凝胶层和电子导电层,所述第二水凝胶层与电子导电层层叠设置形成复合层,所述第一水凝胶层包裹所述复合层;其中,所述第一水凝胶层包括第一水凝胶基体以及填充于所述第一水凝胶基体中的第一电解液,所述第一水凝胶基体由高分子共聚物、海藻酸钠、明胶和壳寡糖通过分子链交织形成,所述高分子共聚物选自丙烯酸‑异丙基丙烯酰胺共聚物和/或丙烯酰胺‑异丙基丙烯酰胺共聚物。本发明的电极不但具有优异的柔性,可长时间缓释电解液和高电子导电率,同时还有优异的粘弹性和粘性可调性,进而在用于检测运动状态下的脑电信号时,可显著降低运动伪影,提高脑电信号的质量。
-
公开(公告)号:CN117017308B
公开(公告)日:2024-01-23
申请号:CN202311299004.X
申请日:2023-10-09
Applicant: 之江实验室
Abstract: 本申请涉及一种慢波神经信号放大电路,其中,该慢波神经信号放大电路包括:滤波单元和放大单元,滤波单元包括电容和伪电阻;电容的一端作为信号输入端,电容的另一端与伪电阻的第一端以及放大单元的输入端连接,电容将输入信号耦合至放大单元;伪电阻的第二端连接共模电压,伪电阻的第一端与放大单元的输入端连接,为放大单元提供偏置电压;通过设置伪电阻的阻抗值,使得滤波单元的滤波截止频率达到目标值,得到滤波信号,并对滤波信号进行放大。通过本申请,解决了在传统的脑机接口信号采集电路中使用跨接在输入端和输出端的伪电阻的阻抗不稳定的问题,通过采用输入偏置的方法,大幅降低了高通截止频率,有利于慢波神经信号的采集。
-
公开(公告)号:CN117224129A
公开(公告)日:2023-12-15
申请号:CN202311522719.7
申请日:2023-11-15
Applicant: 之江实验室
Abstract: 本发明涉及一种电极及其制备方法和应用。电极包括第一水凝胶层、第二水凝胶层和电子导电层,所述第二水凝胶层与电子导电层层叠设置形成复合层,所述第一水凝胶层包裹所述复合层;其中,所述第一水凝胶层包括第一水凝胶基体以及填充于所述第一水凝胶基体中的第一电解液,所述第一水凝胶基体由高分子共聚物、海藻酸钠、明胶和壳寡糖通过分子链交织形成,所述高分子共聚物选自丙烯酸‑异丙基丙烯酰胺共聚物和/或丙烯酰胺‑异丙基丙烯酰胺共聚物。本发明的电极不但具有优异的柔性,可长时间缓释电解液和高电子导电率,同时还有优异的粘弹性和粘性可调性,进而在用于检测运动状态下的脑电信号时,可显著降低运动伪影,提高脑电信号的质量。
-
公开(公告)号:CN119470599A
公开(公告)日:2025-02-18
申请号:CN202510059074.0
申请日:2025-01-15
Applicant: 之江实验室
IPC: G01N27/414
Abstract: 本申请涉及HEMT生物传感器制备方法和HEMT生物传感器,其中,该方法包括:在HEMT外延层上制备多个单颗HEMT器件,形成HEMT阵列;HEMT外延层包括硅衬底;对HEMT阵列中的硅衬底进行刻蚀处理,得到阵列薄膜;将阵列薄膜转移至带有第一绝缘层的柔性衬底表面,得到柔性HEMT阵列薄膜;在柔性HEMT阵列薄膜上部署多个电连接组件,电连接组件分别与柔性HEMT阵列薄膜上的多个单颗HEMT对应连接;在柔性HEMT阵列薄膜上方制备多个生物分子识别元件,形成HEMT生物传感器。通过本申请,解决了HEMT生物传感器因硬质衬底导致的柔性不足、应用范围受限的问题,使得柔性HEMT阵列生物传感器在性能、适应性和应用领域上有了显著提升,为可穿戴设备、植入式医疗设备等领域的应用提供了有力支持。
-
公开(公告)号:CN117982148B
公开(公告)日:2024-08-27
申请号:CN202410403241.4
申请日:2024-04-03
Applicant: 之江实验室
Abstract: 本申请涉及一种应用于生物电信号采集芯片的多通道双路斩波方法以及系统。所述方法通过将脑电信号两两组合并进行斩波调制,将调制后的双路脑电信号均传递至对应通路的全差分信号放大器的同相输入端,所有的反相输入端统一接参考电极的基准信号,对各组双路脑电信号进行信号放大,使得输入阻抗均衡,有效解决了正负端输入阻抗不匹配的问题,提高了脑电信号的共模抑制比。
-
公开(公告)号:CN118352448A
公开(公告)日:2024-07-16
申请号:CN202410764712.4
申请日:2024-06-14
Applicant: 之江实验室
Abstract: 本发明涉及光遗传学神经探针及其制备方法和应用。其中,光遗传学神经探针包括柔性衬底;第一绝缘层;多个电连接组件;InGaN基纳米柱LED,InGaN基纳米柱LED包括InGaN基LED外延层以及设于InGaN基LED外延层上的N型电极和多个P型电极,N型电极和P型电极分别与对应的电连接组件中的键合金属电性连接;InGaN基LED外延层具有多个由纳米柱阵列组成的发光区域,每个发光区域中的纳米柱阵列的直径相同,不同发光区域的纳米柱阵列的直径相同或者不同。该光遗传学神经探针具有体积小、厚度薄、调控精度高的特点,能够实现多光谱出光的同时,有效减少光遗传学神经探针植入时的创口面积和减小组织免疫反应,提高生物安全性。
-
公开(公告)号:CN117126429A
公开(公告)日:2023-11-28
申请号:CN202311388072.3
申请日:2023-10-25
Applicant: 之江实验室
IPC: C08J3/075 , A61B5/268 , A61B5/266 , A61B5/259 , C08L33/26 , C08L33/12 , C08L33/08 , C08L65/00 , C08L25/18 , C08K7/00 , C08K3/08 , C08K3/14 , C08K3/04 , C08F220/14 , C08F220/56 , C08F220/06 , C08F222/38 , C08F220/18
Abstract: 本发明涉及一种凝胶半干电极及其制备方法和应用。所述凝胶半干电极包括憎水性电子导电凝胶骨架以及填充于所述憎水性电子导电凝胶骨架中的亲水性离子导电水凝胶,所述憎水性电子导电凝胶骨架和亲水性离子导电水凝胶由于相分离作用形成拓扑结构;其中,所述憎水性电子导电凝胶骨架包括憎水性凝胶骨架和填充于所述憎水性凝胶骨架中的电子导电材料,所述亲水性离子导电水凝胶包括亲水性水凝胶网络以及填充于所述亲水性水凝胶网络中的电解质和水。本发明的凝胶半干电极具有优异的柔性、可长时间缓释电解液以及高电子电导率,用于检测生理电信号时,可以显著降低生理电信号传输过程中的阻抗,提升生理电信号的检测质量。
-
公开(公告)号:CN118352448B
公开(公告)日:2024-10-18
申请号:CN202410764712.4
申请日:2024-06-14
Applicant: 之江实验室
Abstract: 本发明涉及光遗传学神经探针及其制备方法和应用。其中,光遗传学神经探针包括柔性衬底;第一绝缘层;多个电连接组件;InGaN基纳米柱LED,InGaN基纳米柱LED包括InGaN基LED外延层以及设于InGaN基LED外延层上的N型电极和多个P型电极,N型电极和P型电极分别与对应的电连接组件中的键合金属电性连接;InGaN基LED外延层具有多个由纳米柱阵列组成的发光区域,每个发光区域中的纳米柱阵列的直径相同,不同发光区域的纳米柱阵列的直径相同或者不同。该光遗传学神经探针具有体积小、厚度薄、调控精度高的特点,能够实现多光谱出光的同时,有效减少光遗传学神经探针植入时的创口面积和减小组织免疫反应,提高生物安全性。
-
公开(公告)号:CN117017308A
公开(公告)日:2023-11-10
申请号:CN202311299004.X
申请日:2023-10-09
Applicant: 之江实验室
Abstract: 本申请涉及一种慢波神经信号放大电路,其中,该慢波神经信号放大电路包括:滤波单元和放大单元,滤波单元包括电容和伪电阻;电容的一端作为信号输入端,电容的另一端与伪电阻的第一端以及放大单元的输入端连接,电容将输入信号耦合至放大单元;伪电阻的第二端连接共模电压,伪电阻的第一端与放大单元的输入端连接,为放大单元提供偏置电压;通过设置伪电阻的阻抗值,使得滤波单元的滤波截止频率达到目标值,得到滤波信号,并对滤波信号进行放大。通过本申请,解决了在传统的脑机接口信号采集电路中使用跨接在输入端和输出端的伪电阻的阻抗不稳定的问题,通过采用输入偏置的方法,大幅降低了高通截止频率,有利于慢波神经信号的采集。
-
公开(公告)号:CN118041265B
公开(公告)日:2024-08-13
申请号:CN202410438181.X
申请日:2024-04-12
Applicant: 之江实验室
Abstract: 本申请涉及一种面向生物电信号的斩波频率可调的斩波放大电路,包括:生物电信号模式选择模块、可调斩波频率时钟信号生成电路和斩波调制放大电路;生物电信号模式选择模块分别与可调斩波频率时钟信号生成电路和斩波调制放大电路连接,生物电信号模式选择模块用于控制随机斩波频率模态和斩波调制放大电路的带宽范围;可调斩波频率时钟信号生成电路和斩波调制放大电路连接,可调斩波频率时钟信号生成电路用于生成斩波频率可调的时钟信号;斩波调制放大电路用于将输入信号放大以及滤除干扰信号。本申请的斩波放大电路产生适应不同幅频特性的生物电信号的随机斩波频率模态与放大电路带宽范围,实现对不同生物电信号的高效采集与放大。
-
-
-
-
-
-
-
-
-