-
公开(公告)号:CN113115363A
公开(公告)日:2021-07-13
申请号:CN202110426526.6
申请日:2021-04-20
Applicant: 国家计算机网络与信息安全管理中心
Inventor: 倪善金 , 万辛 , 黄远 , 孙晓晨 , 宁珊 , 沈亮 , 高圣翔 , 计哲 , 杨晶超 , 张震 , 李鹏 , 石瑾 , 李沁 , 侯炜 , 刁则鸣 , 刘发强 , 孙旭东 , 王立强 , 刘睿霖
IPC: H04W28/02 , H04W28/08 , H04B17/318 , H04B17/382
Abstract: 本公开提供一种异构网络中的移动通信方法、装置与电子设备。异构网络中的移动通信方法包括:确定目标用户在所述目标异构网络中的目标位置确定所述目标位置处于所述目标低功率节点的目标信号范围内,所述目标信号范围是根据所述目标低功率节点与所述宏基站之间的目标信号强度边界和所述目标信号强度边界的目标范围扩展基基确定的将所述目标用户与所述宏基站之间通信切换为所述目标用户与所述目标低功率节点进行通信。本公开实施例提供的技术方案可以通过低功率节点的覆盖边界扩展,降低宏基站的负载,提高异构网络中用户的网络信号强度,增强系统的可靠性和频谱效率。
-
公开(公告)号:CN113420112B
公开(公告)日:2025-02-18
申请号:CN202110685518.3
申请日:2021-06-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/334 , G06F40/289 , G06F18/214 , G06F18/23213
Abstract: 本发明涉及一种基于无监督学习的新闻实体分析方法及装置。方法包括:对待处理的多条新闻数据中的每条新闻数据分别进行分词处理,将分词处理后的每条新闻中包含的多个实体进行标注以得到标注结果;基于所述标注结果构建分布式表示模型,得到所述多个实体的分布式表示信息,所述分布式表示信息标识为实体向量;根据所述多个实体的分布式表示信息,对所述多个实体进行聚类分析以得到聚类结果。本申请将分布式的思想引入新闻实体的处理当中,通过新闻实体所处位置的上下文来得到实体的分布式表示,通过对实体的聚类分析来得到实体的聚类结果。
-
公开(公告)号:CN119311871A
公开(公告)日:2025-01-14
申请号:CN202411222450.5
申请日:2024-09-02
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/36 , G06F18/25 , G06F18/213 , G06N3/045
Abstract: 本申请涉及舆情监测技术领域,公开一种面向噪声文本信息的检测方法及系统,所述方法包括:获取目标数据集;对目标数据集进行预处理,获取预处理后的文本特征;构成汉化文本分类模型预训练模型,其中,汉化文本分类模型预训练模型用于预处理后的文本特征,以获取文本的表示向量;构建两个结构不同的基于汉化文本分类预训练模型作为双塔模型的基分类器A和基分类器B;用相同数据集对基分类器A和基分类器B进行调整。本发明能够对双塔模型进行相互校验,对双塔模型的输出结果进行综合考量,并输出最终结果,从而有效提高整体的特定内容检测准确率。
-
公开(公告)号:CN117593679B
公开(公告)日:2024-08-02
申请号:CN202311340257.7
申请日:2023-10-16
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06V20/40 , G06V40/16 , G06V10/764 , G06V10/25 , G06V10/82 , G06N3/084 , G06N3/0499
Abstract: 本发明提供一种伪造视频检测方法、装置、电子设备及存储介质,涉及计算机技术领域,方法包括:基于待检测视频,确定待检测视频对应的第一判别特征向量和第二判别特征向量;第一判别特征向量表示待检测视频中每帧人脸图像之间的时域特征信息;第二判别特征向量表示待检测视频中每帧人脸图像之间的频域特征信息;基于第一判别特征向量和第二判别特征向量,确定待检测视频对应的目标特征向量;目标特征向量表示融合时域特征信息和频域特征信息的特征信息;基于目标特征向量,确定待检测视频的检测结果。通过时域特征信息和频域特征信息的融合,能够准确确定待检测视频的检测结果,提升了待检测视频的检测精度。
-
公开(公告)号:CN117711393A
公开(公告)日:2024-03-15
申请号:CN202311695998.7
申请日:2023-12-11
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明涉及语音识别技术领域,提供一种语音对抗样本的防御方法、装置、设备和存储介质,该方法包括:获取原始语音指令对应的原始识别结果和降噪后的识别结果;在确定原始识别结果与降噪后的识别结果不相同的情况下,根据白噪声异常度和预设的异常度阈值,确定降噪后的识别结果对应的第一指令是否为语音对抗样本;白噪声异常度用于表征输入原始语音指令至语音识别模型时原始语音指令和所处的环境的环境噪声的相关程度;在第一指令为语音对抗样本的情况下,将第一指令进行作废。本发明提升了语音对抗样本的防御效果。
-
公开(公告)号:CN114826735A
公开(公告)日:2022-07-29
申请号:CN202210442276.X
申请日:2022-04-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L9/40
Abstract: 本发明公开一种基于异构神经网络技术的VoIP恶意行为检测方法及系统,涉及网络信息安全领域,通过从VoIP多数据源中抽取出信息对象,构建异构信息网络,利用GEM模型获得节点向量表示;再通过计算不同节点之间的相似度进行聚类,通过对同一类节点打上相同标签来丰富训练数据,再对对分类算法进行有监督学习分类,获取有害的VoIP节点。本发明能够利用多种数据源的信息,通过挖掘异构信息网络中的隐式关系和隐藏模式发现有害VoIP行为。
-
公开(公告)号:CN114826735B
公开(公告)日:2023-11-03
申请号:CN202210442276.X
申请日:2022-04-25
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L9/40
Abstract: 本发明公开一种基于异构神经网络技术的VoIP恶意行为检测方法及系统,涉及网络信息安全领域,通过从VoIP多数据源中抽取出信息对象,构建异构信息网络,利用GEM模型获得节点向量表示;再通过计算不同节点之间的相似度进行聚类,通过对同一类节点打上相同标签来丰富训练数据,再对对分类算法进行有监督学习分类,获取有害的VoIP节点。本发明能够利用多种数据源的信息,通过挖掘异构信息网络中的隐式关系和隐藏模式发现有害VoIP行为。
-
公开(公告)号:CN116610758A
公开(公告)日:2023-08-18
申请号:CN202310478299.0
申请日:2023-04-28
Applicant: 国家计算机网络与信息安全管理中心
Abstract: 本发明实施例涉及一种信息溯源方法、系统及存储介质,所述方法包括:从多个平台中获取同一类目标主题信息,并对所述目标主题信息进行预处理,得到目标文本;创建所述目标文本的目标图谱;对所述目标图谱进行实体链接处理,得到所述目标文本的发布者集合,所述发布者集合携带有所述目标文本的传播路径信息;对所述发布者集合进行溯源分析,确定所述目标主题信息的目标发布者。通过对多个平台上的主题信息进行跨平台、跨时空的追踪和分析,确定主题信息的起源、演变和传播路径,为用户提供全面的信息参考和决策支持,由此,可以实现多平台的信息溯源的技术效果。
-
公开(公告)号:CN113420112A
公开(公告)日:2021-09-21
申请号:CN202110685518.3
申请日:2021-06-21
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
IPC: G06F16/33 , G06F40/289 , G06K9/62
Abstract: 本发明涉及一种基于无监督学习的新闻实体分析方法及装置。方法包括:对待处理的多条新闻数据中的每条新闻数据分别进行分词处理,将分词处理后的每条新闻中包含的多个实体进行标注以得到标注结果;基于所述标注结果构建分布式表示模型,得到所述多个实体的分布式表示信息,所述分布式表示信息标识为实体向量;根据所述多个实体的分布式表示信息,对所述多个实体进行聚类分析以得到聚类结果。本申请将分布式的思想引入新闻实体的处理当中,通过新闻实体所处位置的上下文来得到实体的分布式表示,通过对实体的聚类分析来得到实体的聚类结果。
-
公开(公告)号:CN114420100B
公开(公告)日:2022-06-21
申请号:CN202210321299.5
申请日:2022-03-30
Applicant: 中国科学院自动化研究所
Abstract: 本公开涉及一种语音检测方法及装置、电子设备及存储介质,所述方法包括:对待检测语音进行声学特征提取,得到第一声学特征和第二声学特征;将第一声学特征序列输入预先训练好的采样率预测模型,得到采样率信息特征;将第二声学特征和采样率信息特征输入预先训练好的语音检测模型,得到待检测语音为真实语音或合成语音的分类结果,结合采样率信息特征对待检测语音进行检测,能够对实际场景中音频进行音频质量的快速判别,帮助语音检测模型对实际音频的不同频带进行更加有侧重的识别,避免假高频语音对模型判别进行干扰,提高检测模型的分类精确度。
-
-
-
-
-
-
-
-
-