-
公开(公告)号:CN118713938A
公开(公告)日:2024-09-27
申请号:CN202411203462.3
申请日:2024-08-30
Applicant: 烟台大学
IPC: H04L9/40 , G06F18/2433 , G06F18/25
Abstract: 本发明涉及异常节点检测技术领域,尤其是涉及一种基于异质图的工业互联网异常节点检测方法及系统。所述方法包括:对新的图结构进行不同类型节点的特征映射;基于自注意力机制对新的图结构进行计算得到节点嵌入向量;基于语义级的注意力机制学习元路径的重要性,通过融合节点嵌入向量得到最终的融合嵌入向量;对节点的融合嵌入向量进行分类,以检测工业互联网中的异常节点。在本发明中,将工业互联网看作异质图神经网络,引入机器学习和图神经网络框架,结合利用图结构学习算法、图注意力网络、元路径等一系列技术,实现对工业互联网中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118333861B
公开(公告)日:2024-08-20
申请号:CN202410756700.7
申请日:2024-06-13
Applicant: 烟台大学
IPC: G06T3/4053 , G06T5/60 , G06T5/50 , G06N3/0475 , G06N3/084 , G06N3/0464 , G06T3/4007
Abstract: 本发明属于图像处理技术领域,具体涉及一种遥感图像重建方法、系统、装置、介质,首先通过模拟实际遥感图像的退化情况来增强数据的真实性、复杂性,然后对遥感图像分别进行两次重建,并根据对比度进行自适应融合以整合不同分辨率的图像信息,从而提高了图像重建的准确性、清晰度和高质量。
-
公开(公告)号:CN118506107A
公开(公告)日:2024-08-16
申请号:CN202410954465.4
申请日:2024-07-17
Applicant: 烟台大学
IPC: G06V10/764 , G06V10/74 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/06 , G06N3/084
Abstract: 本发明涉及机器人技术领域,尤其是涉及一种基于多模态多任务学习的机器人分类检测方法及系统,包括S1.构建多模态数据集并进行数据预处理;S2.将语义信息数据集和图像数据集进行对齐;S3.构建多模态目标检测模型,将多模态数据集输入模型进行多任务学习,对多模态数据集进行特征提取,并将提取后的视觉图像特征和语义信息特征进行特征融合,利用核心语义注意力机制计算机器人的视觉图像特征的加权和,通过优化加权和完成对模型进行训练。本发明提出了一种基于多模态多任务学习的机器人分类检测方法,融合机器人的图像与语义信息,提升检测时文本与图像的特征交互性,使检测模型具备更高的准确性与鲁棒性。
-
公开(公告)号:CN118305818B
公开(公告)日:2024-08-13
申请号:CN202410733032.6
申请日:2024-06-07
Applicant: 烟台大学
Abstract: 本发明涉及计算机视觉技术领域,尤其是涉及一种基于双手交互姿态估计的仿生机械手控制方法及系统。所述方法,包括获取图像数据集,包括获取手部姿态和形状的数据集,并对获取的数据集进行整合;基于获取的手部姿态数据集进行手部姿态估计,包括构建并利用神经网络模型进行手部姿态的特征提取;利用轻量级神经网络模型对手部姿态数据集中手部图像进行特征分析,得到双手的姿态信息;根据特征分析结果进行轻量级神经网络模型训练;通过双手的姿态信息进行姿态对齐和映射,基于姿态对齐和映射生成仿生机械手的控制信息。本发明通过采用轻量级神经网络架构,实现了对两只手之间相对位置的准确预测,使机械手在执行任务时更加准确和可靠。
-
公开(公告)号:CN118233035B
公开(公告)日:2024-08-06
申请号:CN202410658449.0
申请日:2024-05-27
Applicant: 烟台大学
IPC: H04B17/391 , H04B17/382 , G06N3/042 , G06N3/0455
Abstract: 本发明涉及频谱预测技术领域,尤其是涉及一种基于图卷积倒置Transformer的多频带频谱预测方法及系统。方法包括获取多频带频谱数据;对多频带频谱数据进行数据预处理;构建图卷积网络,利用图卷积网络对多频带频谱数据进行特征提取,得到邻接矩阵;利用倒置Transformer模型对邻接矩阵结合多频带频谱数据进行自注意力计算,输出预测结果;对输出预测结果进行验证后,得到最后的预测结果。本发明不仅提高了预测的准确性,也增强了模型对未来频谱使用趋势的预测能力。
-
公开(公告)号:CN118379296A
公开(公告)日:2024-07-23
申请号:CN202410831239.7
申请日:2024-06-26
Applicant: 烟台大学
IPC: G06T7/00 , G06V10/25 , G06V10/26 , G06V10/44 , G06V10/80 , G06V10/77 , G06V10/764 , G06V10/82 , G06N3/0464 , G06N3/0455 , G06N3/0985 , G06N3/048
Abstract: 本发明涉及计算机视觉技术领域,尤其是涉及一种基于视觉神经网络的圆形衬套缺陷检测方法及系统。所述方法,包括:获取训练用图像数据集,并对图像数据集进行预处理;基于获取的图像数据集进行图像分割网络搭建,包括利用线性投影将图像分割为不重叠的块;利用编码器提取分割后的图像特征注意力关系,并通过线性分类器对图像分割网络的输出进行分类;根据图像分割网络的输出分类进行缺陷检测网络搭建,对缺陷检测网络中的每个阶段引入通道注意力机制,并将所有注意力信息反馈至原特征图;利用缺陷检测网络进行检测结果的输出,本发明通过添加通道注意力机制可以帮助网络对图像中重要的目标信息进行突出,提高网络对目标部分的感知能力。
-
公开(公告)号:CN118365646A
公开(公告)日:2024-07-19
申请号:CN202410796193.X
申请日:2024-06-20
Applicant: 烟台大学
IPC: G06T7/00 , G06N3/045 , G06N3/0475 , G06N3/094 , G06N3/042 , G06N3/0464
Abstract: 本发明涉及缺陷检测技术领域,尤其是涉及一种基于生成对抗网络的异型衬套缺陷检测方法及系统。所述方法,包括获取包含异型衬套外表面的图像数据,并利用图像数据生成点云数据;对生成的点云数据进行预处理,包括利用欧式聚类算法对点云数据进行去噪处理;利用预处理后的点云数据构建对抗网络模型,包括构建生成器、判别器和损失函数;基于构建完成的对抗网络模型进行模型训练,包括对生成器和判别器进行训练;利用预处理后的点云数据和对抗网络模型进行模型的缺陷检测;根据缺陷检测结果进行缺陷记录。本发明通过引入注意力机制的生成对抗网络能够更好地关注和利用点云数据中的重要信息,提高缺陷检测的准确性和效率。
-
公开(公告)号:CN118282876A
公开(公告)日:2024-07-02
申请号:CN202410710859.5
申请日:2024-06-04
Applicant: 烟台大学 , 烟台中科网络技术研究所
IPC: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
Abstract: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN117851827A
公开(公告)日:2024-04-09
申请号:CN202410056328.9
申请日:2024-01-16
Applicant: 烟台大学
IPC: G06F18/214 , G06F18/241 , G06F18/243 , G06N5/04 , G06N5/046 , G06N3/0464 , G01S7/02 , G06F123/02
Abstract: 本发明公开了低信噪比雷达辐射源信号脉内识别装置及其训练识别方法,雷达辐射源信号脉内识别装置包括数据分块模块;数据分块模块后端设置有深度神经网络模块;深度神经网络模块后端设置有正向推理结果保存模块;正向推理结果保存模块后端设置有融合推理模块;融合推理模块后端设置有反馈训练接入模块;反馈训练接入模块后端连接在深度神经网络模块上;深度神经网络模块后端还设置有分类模型参数保存模块。采用该装置及训练和识别方法不仅可以得到很好的分类模型,还可以得到精确的分类识别结果,可以有效的区分信噪比低的雷达辐射源信号类型。
-
公开(公告)号:CN117649439A
公开(公告)日:2024-03-05
申请号:CN202410121538.1
申请日:2024-01-30
Applicant: 山东省海洋资源与环境研究院(山东省海洋环境监测中心、山东省水产品质量检验中心) , 烟台大学
IPC: G06T7/62 , G06T7/11 , G06T5/73 , G06T5/20 , G06V20/10 , G06V10/20 , G06V10/36 , G06V10/44 , G06V10/80
Abstract: 本发明涉及图像处理技术领域,具体为一种海草床面积的获取方法、系统、设备和存储介质,该获取方法,首先将带雾的初始海草床图像先进行便于快速计算的去雾厚度处理,查看去雾厚度图的质量是否达标;若去雾厚度图质量不达标,使用更细致的去雾浓度处理方法提升初始海草床图像的图像质量,直至去雾浓度图达标后进行特征提取;若去雾厚度图质量达标了,直接进行特征提取;接着,特征提取的过程中,使用语义特征提取和全局特征提取处理等处理去雾厚度图或去雾浓度图,获取特征海草床图;然后,基于特征海草床图的像素差分布情况,确定海草床区域的边缘点和面积;最后,基于海草床图上面积和图像比例尺,获得真实的海草床面积。
-
-
-
-
-
-
-
-
-