-
公开(公告)号:CN118282876B
公开(公告)日:2024-08-30
申请号:CN202410710859.5
申请日:2024-06-04
申请人: 烟台大学 , 烟台中科网络技术研究所
IPC分类号: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
摘要: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
公开(公告)号:CN118313413B
公开(公告)日:2024-08-13
申请号:CN202410741075.9
申请日:2024-06-11
申请人: 烟台大学 , 烟台中科网络技术研究所
摘要: 本发明涉及神经网络模型技术领域,尤其是涉及一种基于异构图神经网络的物联网链路预测方法及系统。所述方法,包括构建异构图,并对异构图进行特征表示;基于异构图构建客户端本地模型,包括利用动态注意力机制的图注意力网络构建客户端本地模型;输入异构图至客户端本地模型,并引入贝叶斯推理对异构图的特征进行线性变换;通过损失函数对输入异构图的客户端本地模型进行损失处理;计算客户端本地模型梯度,并对客户端本地模型梯度执行全局模型聚合,得到全局模型参数;将全局模型参数下发至客户端本地模型。通过本发明的技术方案提高链路预测的准确性和鲁棒性。
-
公开(公告)号:CN118313413A
公开(公告)日:2024-07-09
申请号:CN202410741075.9
申请日:2024-06-11
申请人: 烟台大学 , 烟台中科网络技术研究所
摘要: 本发明涉及神经网络模型技术领域,尤其是涉及一种基于异构图神经网络的物联网链路预测方法及系统。所述方法,包括构建异构图,并对异构图进行特征表示;基于异构图构建客户端本地模型,包括利用动态注意力机制的图注意力网络构建客户端本地模型;输入异构图至客户端本地模型,并引入贝叶斯推理对异构图的特征进行线性变换;通过损失函数对输入异构图的客户端本地模型进行损失处理;计算客户端本地模型梯度,并对客户端本地模型梯度执行全局模型聚合,得到全局模型参数;将全局模型参数下发至客户端本地模型。通过本发明的技术方案提高链路预测的准确性和鲁棒性。
-
公开(公告)号:CN118282876A
公开(公告)日:2024-07-02
申请号:CN202410710859.5
申请日:2024-06-04
申请人: 烟台大学 , 烟台中科网络技术研究所
IPC分类号: H04L41/142 , H04L41/16 , H04L41/0631 , H04L67/104
摘要: 本发明涉及网络异常检测技术领域,尤其是涉及一种不完备异构以太坊网络的异常节点检测方法及系统。方法,包括获取以太坊交易数据,并构建以太坊交易网络,基于残差注意力机制补全以太坊交易网络中的目标节点的缺失属性特征;基于以太坊交易网络中的交易关系,生成关系交易子图;基于关系交易子图的相关性,生成关系交易子图的特征相似度图、特征传播图、语义图及观察图;通过引入机器学习算法,将以太坊交易网络与图神经网络结合利用图结构学习算法实现对以太坊交易网络中的异常节点进行准确、高效识别和监控。
-
-
-