一种基于电光材料光波导的光场倍频扫摆器

    公开(公告)号:CN113867015B

    公开(公告)日:2023-08-15

    申请号:CN202111179703.1

    申请日:2021-10-11

    Applicant: 暨南大学

    Abstract: 本发明公开了一种基于电光材料光波导的光场倍频扫摆器,包括衬底、第一掩膜板、第二掩膜板、波导芯层、锯齿电极、双触角信号电极、第一双触角地线电极、第二双触角地线电极、匹配电阻、第一信号输入口和第二信号输入口。本发明通过双触角信号电极上有电流通过时产生热量,使得波导芯层与驱动电压的热光效应,控制芯层内折射率周期变化的相控阵,实现模式扫摆的倍频调制,且有效降低所需的调制电压和所需调制信号的调制频率。本发明作为一种基于电光材料光波导的光场倍频扫摆器,可广泛应用于光波导器件领域。

    用于分离任意正交偏振态的光电可调分束器及其工作方法

    公开(公告)号:CN116482882A

    公开(公告)日:2023-07-25

    申请号:CN202310276679.6

    申请日:2023-03-20

    Applicant: 暨南大学

    Abstract: 本发明提出一种用于分离任意正交偏振态的光电可调分束器及其工作方法,包括:周期性极化的光电单轴晶体,所述光电单轴晶体具有相对的光输入面以及光输出面;第一电极,设置在所述光电单轴晶体的第一表面的部分区域上;所述第一表面靠近所述光输入面以及所述光输出面的区域形成无电极区域;第二电极,设置在所述光电单轴晶体的与第一表面相对的第二表面的部分区域;所述第二表面靠近所述光输入面以及所述光输出面的区域形成无电极区域。本发明可实现将任意正交偏振态的光束分离出来,并且其分离角度大小的方向可以通过电控的方式进行控制。且相比于传统的分束器,本发明提出的光电可调分束器体积更小,对入射光的角度没有苛刻的要求。

    一种光致热弹光谱信号探测装置、气体探测装置及方法

    公开(公告)号:CN116183510A

    公开(公告)日:2023-05-30

    申请号:CN202211665923.X

    申请日:2022-12-23

    Applicant: 暨南大学

    Abstract: 本发明提供了一种光致热弹光谱信号探测装置、气体探测装置及方法,包括:电极改良型石英音叉;电极改良型石英音叉包括:两个矩形音叉振臂、音叉基座及两个音叉引脚;第一个矩形音叉振臂外侧面没有电极覆盖,内侧面和前后两个侧面均被电极覆盖;第二个矩形音叉振臂的四个侧面均被电极覆盖;当所述探测装置工作时,激光从第一个矩形音叉振臂的外侧面入射到石英音叉内部,在光致热弹效应的作用下产生电信号从音叉引脚输出;所述电信号对应入射激光的光致热弹光谱信号。本发明提高了音叉激发效率、提高了光致热弹光谱效率、增强了光致热弹效应,使得光致热弹光谱的探测能力增强。

    带有弯曲形阵列共面电极的芯层波导

    公开(公告)号:CN115718345A

    公开(公告)日:2023-02-28

    申请号:CN202211444226.1

    申请日:2022-11-18

    Applicant: 暨南大学

    Abstract: 本发明公开了一种带有弯曲形阵列共面电极的芯层波导,其包括:衬底层;第一掩膜板以及第二掩膜板;所述第一掩膜板与所述第二掩膜板间隔设置在所述衬底层上,并于间隔处形成波导槽;波导芯层,设置在所述波导槽的底部;第一偏转电极,设置在波导槽内,并位于所述波导芯层上;所述第一偏转电极具有多个弯曲部;第二偏转电极,设置在所述第一掩膜板的靠近所述波导槽的边缘处;第三偏转电极,设置在所述第二掩膜板的靠近所述波导槽的边缘处;馈电组件,分别电连接第一偏转电极、第二偏转电极以及第三偏转电极的两端,以向第一偏转电极、第二偏转电极以及第三偏转电极提供电压。本发明能有效降低实现光场偏转所需的驱动电压,缩小光波导的尺寸。

    一种光纤湿度传感器及其制造方法

    公开(公告)号:CN114966985A

    公开(公告)日:2022-08-30

    申请号:CN202210622700.9

    申请日:2022-06-01

    Applicant: 暨南大学

    Abstract: 本发明涉及光纤传感器技术领域,公开了一种光纤湿度传感器的制造方法,包括如下步骤:S1:将单模光纤加热熔融拉制成双锥形微纳光纤;S2:用掩膜法在介质衬底上刻蚀出深度为纳米量级的微型槽;S3:将双锥形微纳光纤的腰部悬空于刻蚀有微型槽的介质衬底上方;S4:用紫光胶将双锥形微纳光纤两端固定在微型槽两侧;本发明制得的光纤湿度传感器,结构简单,无需添加特殊的增敏材料,仅利用双锥形微纳光纤倏逝场与介质衬底相互耦合的方式即可实现环境湿度的传感,具有灵敏度高、响应速度快、重复性和稳定性强的优点。

    一种非接触式石英增强光声光谱气体探测装置

    公开(公告)号:CN116087109A

    公开(公告)日:2023-05-09

    申请号:CN202310162488.7

    申请日:2023-02-22

    Applicant: 暨南大学

    Abstract: 本发明提供了一种非接触式石英增强光声光谱气体探测装置,包括:气室和石英音叉;气室包括:两个气体缓冲区和一个声学谐振腔;声学谐振腔的中间开设有狭缝缺口,且狭缝缺口由弹性薄膜填补;石英音叉置于气室外侧,其振臂正对声学谐振腔上的弹性薄膜耦合,双方可以接触,也可以不接触;当激光穿过声学谐振腔后,在光声效应的作用下,激光光束所激发的声波在声学谐振腔内形成驻波,驻波对应的声波信号经过弹性薄膜形成振动波,振动波推动石英音叉振臂振动;石英音叉振臂振动信号强度与气室内气体的浓度正相关,气体探测装置能够在石英音叉不与气体接触的情况下实现对气体浓度的探测。本发明提供的装置对腐蚀性气体和含尘气体的检测意义重大。

    一种基于光纤集成的可调谐高效倍频器件及其制备方法

    公开(公告)号:CN115877631A

    公开(公告)日:2023-03-31

    申请号:CN202211532604.1

    申请日:2022-12-01

    Applicant: 暨南大学

    Abstract: 本发明涉及非线性光学领域,具体涉及一种基于光纤集成的可调谐高效倍频器件及其制备方法。包括:衬底、叉指电极、二阶非线性光学材料和微纳光纤;所述叉指电极设置在衬底上表面,所述二阶非线性光学材料覆盖在叉指电极上表面,所述微纳光纤具有双锥形结构,所述双锥形结构区域紧贴于所述二阶非线性光学材料。本发明将具有良好二阶非线性光学系数的材料覆盖在叉指电极上,微纳光纤与材料耦合激发二阶非线性的同时满足准相位匹配以及局域场增强,实现高效的倍频转换过程,同时可以通过改变微纳光纤的直径、叉指电极的周期、微纳光纤与叉指电极的夹角以及基频光波长来实现准相位匹配。

    一种全光纤电光调制器及制备方法

    公开(公告)号:CN114935837A

    公开(公告)日:2022-08-23

    申请号:CN202210579925.0

    申请日:2022-05-25

    Applicant: 暨南大学

    Abstract: 本申请公开了一种全光纤电光调制器及制备方法,涉及光电子器件领域。所述全光纤电光调制器包括:单模‑锥形双模‑单模结构光纤,所述单模‑锥形双模‑单模结构光纤为双模光纤区域拉锥为锥形双模光纤的单模‑双模‑单模结构光纤;ITO导电玻璃电极,所述ITO导电玻璃为顶层ITO导电玻璃电极和底层ITO导电玻璃电极;所述ITO导电玻璃电极用于连接外部调制电压;聚酰亚胺垫片,所述聚酰亚胺垫片固定在所述底层ITO导电玻璃的两端;有机电光聚合物薄膜,所述有机电光聚合物薄膜旋涂于所述底层ITO导电玻璃,所述单模‑锥形双模‑单模结构光纤置于极化后的所述有机电光聚合物薄膜的表面。

    一种利用真空能量涨落的真空空间推进器及推进方法

    公开(公告)号:CN114516429A

    公开(公告)日:2022-05-20

    申请号:CN202210167272.5

    申请日:2022-02-23

    Applicant: 暨南大学

    Abstract: 本发明公开了一种利用真空能量涨落的真空空间推进器及推进方法,其中推进器包括推进系统、控制系统以及供电系统,所述供电系统对所述推进系统以及控制系统进行供电;所述推进系统包括旋转电机以及连接于所述旋转电机上的若干扇叶,所述扇叶表面设置有若干手性粒子,所述若干手性粒子在所述扇叶表面呈阵列分布,所述旋转电机用于带动所述扇叶以及所述手性粒子绕旋转轴高速旋转,以使所述手性粒子与真空中的热和真空能量涨落相互作用,产生驱动力。本发明利用真空零点能辅助来驱动空间推进器,解决了传统空间推进器需要携带大量工质,从而导致的发射成本高、服役寿命短以及工作空间范围受限等问题。

    用于光声光谱探测的钳式晶振及其气体探测装置

    公开(公告)号:CN114397246A

    公开(公告)日:2022-04-26

    申请号:CN202210078015.4

    申请日:2022-01-24

    Applicant: 暨南大学

    Abstract: 本发明涉及一种用于光声光谱探测的钳式晶振及采用该钳式晶振的气体探测装置,所述钳式晶振包括晶振基底及振臂,所述晶振基底的两侧顶部向上延伸分别设置所述振臂,相邻所述振臂之间开设有第一空隙,所述振臂的内侧开设有圆弧缺口,一对所述圆弧缺口及部分所述第一空隙组合形成圆形空隙。还涉及一种气体探测装置,其包括上述所述的用于光声光谱探测的钳式晶振。本发明的该钳式晶振具有全新设计的结构和形状,经过几何参数设计,使其具备35.6kHz的低频谐振频率,适合于光声光谱探测。基于钳式晶振的光声光谱探测装置具有采样体积小、响应速度快等特点,通过变换激光器波长,可以实现其它多种气体探测,能够有效提高光声光谱的探测能力。

Patent Agency Ranking