一种基于残差式特征融合网络的风机叶片缺陷检测方法

    公开(公告)号:CN119579592A

    公开(公告)日:2025-03-07

    申请号:CN202510132145.5

    申请日:2025-02-06

    Applicant: 无锡学院

    Abstract: 本发明提供了一种基于残差式特征融合网络的风机叶片缺陷检测方法,包括:步骤1,获取风力发电机叶片缺陷多目标数据集和多分类数据集,划分为训练集、验证集和测试集;步骤2,搭建基于残差式特征融合网络RFFNet的风力发电机叶片缺陷检测模型;步骤3,将训练集和验证集中的风力发电机叶片缺陷图像输入至风力发电机叶片缺陷检测模型中训练,获取最佳参数模型;步骤4,将测试集输入到步骤3中训练好的最佳参数模型中,输出风力发电机叶片缺陷图像的精确识别图。本发明所提出的网络在检测风力发电机叶片缺陷,改善误检漏检等方面具有显著优势,有效应对复杂环境以及多目标缺陷检测中存在的问题,并且具有较快的检测速度。

    一种基于频域信息融合的超高分辨率遥感图像分割方法

    公开(公告)号:CN119559200A

    公开(公告)日:2025-03-04

    申请号:CN202510132147.4

    申请日:2025-02-06

    Applicant: 无锡学院

    Abstract: 本发明提供了一种基于频域信息融合的超高分辨率遥感图像分割方法,包括:步骤1,获取Vaihingen、Potsdam遥感数据集;步骤2,搭建融合多元频域信息的超高分辨率遥感图像分割网络;步骤3,将Vaihingen训练集输入超高分辨率遥感图像分割网络中训练,获取最佳参数模型;步骤4,将Vaihingen测试集输入到最佳参数模型中,输出遥感图像的精确分割图;步骤5,将数据集更换为Potsdam训练集、Potsdam验证集和Potsdam测试集,重复步骤3~步骤4的操作。本发明的模型通过引入LKResNet‑18网络,提高了局部分支的感受野和特征表示能力。

    基于高低语义信息融合的滑坡图像分割方法

    公开(公告)号:CN118887406B

    公开(公告)日:2025-01-28

    申请号:CN202411375916.5

    申请日:2024-09-30

    Applicant: 无锡学院

    Abstract: 本发明公开了基于高低语义信息融合的滑坡图像分割方法,属于滑坡图像处理技术领域。本发明通过构建基于高低语义信息融合的滑坡遥感图像语义分割网络,在网络中通过构建增强全局信息池化模块获取滑坡图像的多尺度信息;在编码器与解码器之间构建了不同特征交互模块从而提升模型的信息交互能力,并通过增强目标信息注意力模块关注图像目标区域特征;设计了多级语义信息融合模块细化图像的边界信息,提高模型对滑坡区域的识别能力,提升模型的分割效果。

    基于高低语义信息融合的滑坡图像分割方法

    公开(公告)号:CN118887406A

    公开(公告)日:2024-11-01

    申请号:CN202411375916.5

    申请日:2024-09-30

    Applicant: 无锡学院

    Abstract: 本发明公开了基于高低语义信息融合的滑坡图像分割方法,属于滑坡图像处理技术领域。本发明通过构建基于高低语义信息融合的滑坡遥感图像语义分割网络,在网络中通过构建增强全局信息池化模块获取滑坡图像的多尺度信息;在编码器与解码器之间构建了不同特征交互模块从而提升模型的信息交互能力,并通过增强目标信息注意力模块关注图像目标区域特征;设计了多级语义信息融合模块细化图像的边界信息,提高模型对滑坡区域的识别能力,提升模型的分割效果。

    一种基于多尺度混合架构的电力需求动态预测方法

    公开(公告)号:CN119990477A

    公开(公告)日:2025-05-13

    申请号:CN202510468974.0

    申请日:2025-04-15

    Applicant: 无锡学院

    Abstract: 本发明提供了一种基于多尺度混合架构的电力需求动态预测方法,包括以下步骤:步骤1,获取多源数据并进行预处理;步骤2,构建动态特征工程;步骤3,构建混合预测模型;步骤4,执行分阶段动态训练策略;步骤5,验证模型并部署应用所述模型。本发明通过引入温度敏感度分段非线性编码和节假日多维动态衰减模型,显著提升了极端温度场景下的预测精度,降低了高温日负荷预测误差以及春节假期误差。此外,通过轻量化设计及分阶段动态策略分阶段扩展输入长度,训练收敛速度提升明显。

    基于目标特征增强多尺度融合网络的遥感目标检测方法

    公开(公告)号:CN119229096A

    公开(公告)日:2024-12-31

    申请号:CN202411721505.7

    申请日:2024-11-28

    Applicant: 无锡学院

    Abstract: 本发明公开了基于目标特征增强多尺度融合网络的遥感目标检测方法,通过构建多层特征聚合模块作为主要特征提取模块,更好地提取各类别的目标特征;构建多通道特征融合模块,减少网络层参数量,采用跨阶段层次结构设计MCFCSP模块,实现更丰富的梯度组合和特征表达,加强网络特征融合能力;通过采用采用自顶向下和自底向上的特征融合策略,促进不同层次特征之间的信息交互;构建分数阶傅里叶变换卷积,根据小目标的特点和场景的变化调整参数,来适应不同类型、不同尺寸和不同复杂度的小目标。本发明提出的方法具备检测精度高、计算复杂度低、特征表示能力强等特点,能有效提高小目标的检测精度,进一步改善遥感图像小目标检测性能。

    一种遥感图像目标检测方法
    17.
    发明公开

    公开(公告)号:CN118314434A

    公开(公告)日:2024-07-09

    申请号:CN202410257888.0

    申请日:2024-03-07

    Applicant: 无锡学院

    Abstract: 本发明公开了一种遥感图像目标检测方法,包括:收集遥感图像数据集,对数据集进行标注,制作YOLO格式的遥感图像数据集,并划分为训练集和测试集;搭建基于增强感受野的多尺度神经网络,主要由输入端口、主干网络、颈部网络和检测头四个部分构成,其中主干网络和颈部网络构成增强小目标特征的多尺度神经网络的主模块;将训练集的遥感图像输入至增强感受野的多尺度神经网络中进行训练和验证,获取最佳的检测模型;利用经过训练和验证的最佳模型对测试集进行目标检测。本发明提供一种增强感受野的多尺度遥感图像目标检测方法,解决了现阶段遥感图像目标检测算法存在的问题。

    一种基于多尺度特征增强网络的SAR船舰检测方法

    公开(公告)号:CN118196496A

    公开(公告)日:2024-06-14

    申请号:CN202410304277.7

    申请日:2024-03-18

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于多尺度特征增强网络的SAR船舰检测方法,包括步骤如下:S1,获取SSDD合成孔径雷达图像数据集以及HRSID数据集,对数据集进行预处理后按照设定的比例划分为训练集、验证集和测试集;S2,搭建多尺度特征增强网络;S3,将步骤S1中经过预处理的训练集和验证集的SAR图像输入至多尺度特征增强网络中训练,计算损失函数并进行反向传播,更新网络参数,获取最佳参数模型并保存;S4,将步骤S1中经过预处理的测试集输入到步骤S3中训练好的最佳参数模型中,输出SAR图像的精确识别图。本发明能有效应对合成孔径雷达船舰检测中存在的问题,并提供高精度的检测方法。

    一种基于图神经网络的生命体征预测方法

    公开(公告)号:CN117995402A

    公开(公告)日:2024-05-07

    申请号:CN202410141593.7

    申请日:2024-02-01

    Applicant: 无锡学院

    Abstract: 本发明公开了一种基于图神经网络的生命体征预测方法,包括步骤如下:S1,对采集含有患者信息的数据集,并对数据集进行预处理;S2,将预处理后的数据分为动态特征向量和静态特征向量,并对动态特征向量和静态特征向量分别输入生命体征预测网络进行处理;S3,将处理完后的动态特征向量和静态特征向量进行拼接,得到一个新的特征向量;S4,将新的特征向量输入GeLU和全连接层,输出患者生命体征预测信息;S5,通过wandb模块对患者的指标进行实时监测。本发明能实现实时检测和提高预测精准度。本发明能加快预测速度,实现对体征信息的时间序列的特征强化。

Patent Agency Ranking