-
公开(公告)号:CN113225318A
公开(公告)日:2021-08-06
申请号:CN202110400950.3
申请日:2021-04-14
Applicant: 山东省计算中心(国家超级计算济南中心) , 山东山科数字经济研究院有限公司
IPC: H04L29/06 , G06F16/182 , G06F21/60 , H04L9/06 , H04L9/32
Abstract: 本发明公开了一种政务大数据加密传输及安全存储的方法及系统,数据发送端对获取的政务大数据进行摘要提取;确定摘要加密等级;根据加密等级对政务大数据进行加密处理,生成政务大数据密文;数据发送端将政务大数据密文、摘要以及加密等级,发送到存储器进行存储;数据输出端向存储器发送政务大数据获取请求;存储器对数据输出端的加密等级进行确认,若通过,则将政务大数据密文以及摘要发送给数据输出端,并向数据发送端发送数据被调用通知;数据输出端在接收到数据之后,对数据进行解密,并进行摘要提取,将提取的摘要与接收数据中的摘要进行比对,若相同,则将解密后的数据进行输出展示。提高了信息传输和信息存储时的安全性、提高传输效率。
-
公开(公告)号:CN119150186A
公开(公告)日:2024-12-17
申请号:CN202411183021.1
申请日:2024-08-27
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/25 , G06F18/241 , G06F18/213 , G06N3/0464 , G06N3/082
Abstract: 本发明提出了基于双维度特征的输氢管网流量异常检测方法及系统,通过在时间维度和通道维度进行自适应切片,得到大小一致的数据切片;利用时间特征提取器、空间特征提取器和主干特征提取器捕获切片内部及切片之间的特征关联;利用由多组不同特征尺度隐藏层构成的重构网络进行多视野下的重构,对重构结果进行异常评分,以实现精准的异常检测;本发明方法能够有效识别工业输氢管网中的异常流量数据,提高工业安全管理水平。
-
公开(公告)号:CN118644359B
公开(公告)日:2024-10-22
申请号:CN202411124271.8
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及能源供应技术领域,具体为应用于工业园区的氢能负荷预测方法及系统,通过获取工业园区历史能源负荷数据、工业园区所在地气象站的历史气象数据以及时间数据,并进行预处理,经编码操作得到特征表示;预处理后的数据基于全局时域特征捕获网络得到频域表示,进一步得到全局周期性特征;根据得到的特征表示,利用多尺度特征融合网络提取出局部非线性特征;得到的全局周期性特征和局部非线性特征,利用自适应门控融合网络得到预测结果。利用深度神经网络的强大拟合能力和频域分析的周期性识别优势,结合多尺度特征提取技术,能够更全面、更精细地解析氢能源需求的内在规律,显著提高预测的准确性和稳定性。
-
公开(公告)号:CN118568650B
公开(公告)日:2024-10-15
申请号:CN202411059783.0
申请日:2024-08-05
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/25 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/44 , G06V10/80 , G06V10/82 , G06F40/30 , G06N3/0464 , G06N3/0455 , G06N3/048
Abstract: 本发明属于计算机视觉和图像识别技术领域,提供了一种基于细粒度文本提示特征工程的工业异常检测方法及系统,包括提取工业图像的文本特征、图像块特征和图像特征;利用图像特征对文本提示进行优化更新,得到细粒度文本提示特征;将图像块特征与细粒度文本提示特征进行相似性对比分析,将对比生成的异常结果图进行相加融合得到最终的异常检测结果;优化模型的参数,使损失函数最小,利用训练好的模型进行测试集的异常检测。本发明针对少样本工业图像异常检测,通过特征提取模块、细粒度文本提示工程模块和跨模态空间域多粒度交互模块搭建异常检测模型框架,提高了模型的泛化能力。
-
公开(公告)号:CN117710757B
公开(公告)日:2024-05-24
申请号:CN202410159978.6
申请日:2024-02-05
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明公开了一种基于多尺度特征引导与融合的工业异常检测方法及系统,涉及计算机视觉中的工业图像异常检测技术领域。该方法包括步骤:获取工业产品表面缺陷图像并进行预处理,得到训练集和测试集;建立由模拟异常网络、多尺度特征提取网络、多尺度特征加权融合网络和像素级异常评分网络依次连接的初步异常检测模型;利用训练集对初步异常检测模型进行训练,并利用测试集对训练好的异常检测模型进行效果验证;利用训练好的异常检测模型对待检测的工业图像进行异常检测。本发明能够提高对工业图像异常的敏感性和准确性,实现对产品表面缺陷更为可靠的检测识别和定位。
-
公开(公告)号:CN117853491A
公开(公告)日:2024-04-09
申请号:CN202410262991.4
申请日:2024-03-08
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明属于数字图像处理和计算机视觉领域,提供了基于多场景任务下的少样本工业产品异常检测方法及系统,其技术方案为:将多场景下多种类别的工业产品图像数据集划分为训练集和测试集,所述训练集只包含正常产品图片,将测试集分为支持集和查询集,其中,支持集仅包含正常产品图片,查询集包括各类异常产品图片和对应的正常图片;利用深度对比学习方法构建双孪生网络框架,通过双孪生网络框架构建训练集对应的多场景任务下正常产品的特征分布的目标检测模型;基于训练后的多场景任务下正常产品的特征的目标检测模型建立支持集的特征分布,并通过查询集进行工业产品异常检测得到异常检测结果,可有效地解决实际工业多场景变换下存在的各种问题。
-
公开(公告)号:CN116992870B
公开(公告)日:2023-12-19
申请号:CN202311242919.7
申请日:2023-09-26
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F40/279 , G06F16/28 , G06F17/16 , G06N3/0464 , G06N3/08
Abstract: 本发明公开一种基于非对称核函数的文本信息实体关系抽取方法及系统,涉及实体关系抽取技术领域,包括:获取目标文本的句子向量、实体掩码和关系掩码;所述关系掩码中包括实体词的掩码、处于实体词窗口内的周围词的动态掩码和处于实体词窗口外的边缘词的掩码;对句子向量进行特征编码;根据得到的特征向量和实体掩码得到实体向量,根据特征向量和关系掩码得到关系向量,将实体向量和关系向量作为参数以构建非对称核函数;根据非对称核函数确定目标实体对与每个关系的关联度,由此确定目标实体对在目标文本中的关系。实现对关系语义的聚焦,
-
公开(公告)号:CN117190078A
公开(公告)日:2023-12-08
申请号:CN202311450870.4
申请日:2023-11-03
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: F17D5/00 , F17D5/02 , F17D1/02 , G06F18/2433 , G06F18/25 , G06F123/02
Abstract: 本发明公开了一种输氢管网监测数据异常检测方法及系统,涉及氢能源和数据处理技术领域,该方法包括:获取当前设定时间步长的输氢管网监测数据,提取时间变量序列数据和动态变量序列数据;将提取的数据输入至时序预测模型中,通过时间特征嵌入层和动态特征嵌入层,提取时间特征嵌入和动态特征嵌入,并通过时序编码器和动态编码器分别进行编码,将编码后的特征嵌入输入至转码器中进行融合,输出融合后的变量矩阵;最后动态特征嵌入、编码后的时间特征嵌入和变量矩阵均输入至解码器进行解码,输出预测值;将预测值和实际观测值的差值与设定阈值进行比较,实际观测值是否为异常数据。本发明实现了非平稳的输氢管网监测数据的准确异常检测。
-
公开(公告)号:CN116935221A
公开(公告)日:2023-10-24
申请号:CN202310901025.8
申请日:2023-07-21
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06V20/10 , G06V20/70 , G06V10/25 , G06V10/77 , G06V10/80 , G06V10/82 , G06N3/045 , G06N3/0464 , G06N3/08 , G06Q50/02 , G16Y10/05
Abstract: 一种基于物联网的植保无人机杂草深度学习检测方法,涉及图像识别技术领域,植保无人机对农田进行数据采集,进行挑选制作农作物与杂草数据集,利用农作物与杂草数据集进行分析标注并转换标注格式,图像预处理,特征提取网络模型搭建,特征融合网络模型搭建,图像训练及测试验证,对训练结果进行封装,构建物联网系统。解决了杂草识别准确率低的问题,具有鲁棒性高,泛化能力强,准确度高的特点。
-
公开(公告)号:CN116307022A
公开(公告)日:2023-06-23
申请号:CN202211244827.8
申请日:2022-10-12
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学 , 山东山科数字经济研究院有限公司
IPC: G06Q10/04 , G06Q50/00 , G06N3/042 , G06N3/0442 , G06N3/045 , G06N3/0464 , G06N3/047 , G06N3/048 , G06N3/08 , G06F16/901
Abstract: 本发明公开了一种针对于舆情热点信息预测的方法及系统,应用于网络信息安全领域。该系统合理应用深度学习方法将热点信息的转发过程进行建模,充分考虑了结构和时间信息,实现了端到端的预测。所述系统包括:将热点信息的转发过程转化为图结构;级联注意卷积网络(CAC)提取转发图信息;Dynamic Routing‑AT聚合CAC提取的信息;门控循环单元(GRU)处理时间信息;最后使用多层感知器(MLP)进行预测;模型测试。本发明为该领域提供了全新的针对社交平台复杂数据预测的系统CAC‑G,并且还提出了一种全新的转发图处理方法和聚合方式,解决了该领域对嘈杂的社交媒体数据利用率低,预测效率低等问题,满足了舆情热点信息的动态捕捉和快速精准预测的需求。
-
-
-
-
-
-
-
-
-