-
公开(公告)号:CN118644359B
公开(公告)日:2024-10-22
申请号:CN202411124271.8
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及能源供应技术领域,具体为应用于工业园区的氢能负荷预测方法及系统,通过获取工业园区历史能源负荷数据、工业园区所在地气象站的历史气象数据以及时间数据,并进行预处理,经编码操作得到特征表示;预处理后的数据基于全局时域特征捕获网络得到频域表示,进一步得到全局周期性特征;根据得到的特征表示,利用多尺度特征融合网络提取出局部非线性特征;得到的全局周期性特征和局部非线性特征,利用自适应门控融合网络得到预测结果。利用深度神经网络的强大拟合能力和频域分析的周期性识别优势,结合多尺度特征提取技术,能够更全面、更精细地解析氢能源需求的内在规律,显著提高预测的准确性和稳定性。
-
公开(公告)号:CN118644359A
公开(公告)日:2024-09-13
申请号:CN202411124271.8
申请日:2024-08-16
Applicant: 山东省计算中心(国家超级计算济南中心)
Abstract: 本发明涉及能源供应技术领域,具体为应用于工业园区的氢能负荷预测方法及系统,通过获取工业园区历史能源负荷数据、工业园区所在地气象站的历史气象数据以及时间数据,并进行预处理,经编码操作得到特征表示;预处理后的数据基于全局时域特征捕获网络得到频域表示,进一步得到全局周期性特征;根据得到的特征表示,利用多尺度特征融合网络提取出局部非线性特征;得到的全局周期性特征和局部非线性特征,利用自适应门控融合网络得到预测结果。利用深度神经网络的强大拟合能力和频域分析的周期性识别优势,结合多尺度特征提取技术,能够更全面、更精细地解析氢能源需求的内在规律,显著提高预测的准确性和稳定性。
-