-
公开(公告)号:CN117853491B
公开(公告)日:2024-05-24
申请号:CN202410262991.4
申请日:2024-03-08
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明属于数字图像处理和计算机视觉领域,提供了基于多场景任务下的少样本工业产品异常检测方法及系统,其技术方案为:将多场景下多种类别的工业产品图像数据集划分为训练集和测试集,所述训练集只包含正常产品图片,将测试集分为支持集和查询集,其中,支持集仅包含正常产品图片,查询集包括各类异常产品图片和对应的正常图片;利用深度对比学习方法构建双孪生网络框架,通过双孪生网络框架构建训练集对应的多场景任务下正常产品的特征分布的目标检测模型;基于训练后的多场景任务下正常产品的特征的目标检测模型建立支持集的特征分布,并通过查询集进行工业产品异常检测得到异常检测结果,可有效地解决实际工业多场景变换下存在的各种问题。
-
公开(公告)号:CN118568650B
公开(公告)日:2024-10-15
申请号:CN202411059783.0
申请日:2024-08-05
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/25 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/44 , G06V10/80 , G06V10/82 , G06F40/30 , G06N3/0464 , G06N3/0455 , G06N3/048
Abstract: 本发明属于计算机视觉和图像识别技术领域,提供了一种基于细粒度文本提示特征工程的工业异常检测方法及系统,包括提取工业图像的文本特征、图像块特征和图像特征;利用图像特征对文本提示进行优化更新,得到细粒度文本提示特征;将图像块特征与细粒度文本提示特征进行相似性对比分析,将对比生成的异常结果图进行相加融合得到最终的异常检测结果;优化模型的参数,使损失函数最小,利用训练好的模型进行测试集的异常检测。本发明针对少样本工业图像异常检测,通过特征提取模块、细粒度文本提示工程模块和跨模态空间域多粒度交互模块搭建异常检测模型框架,提高了模型的泛化能力。
-
公开(公告)号:CN117853491A
公开(公告)日:2024-04-09
申请号:CN202410262991.4
申请日:2024-03-08
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06T7/00 , G06V10/44 , G06V10/80 , G06V10/82 , G06N3/0455 , G06N3/0464 , G06N3/048 , G06N3/08
Abstract: 本发明属于数字图像处理和计算机视觉领域,提供了基于多场景任务下的少样本工业产品异常检测方法及系统,其技术方案为:将多场景下多种类别的工业产品图像数据集划分为训练集和测试集,所述训练集只包含正常产品图片,将测试集分为支持集和查询集,其中,支持集仅包含正常产品图片,查询集包括各类异常产品图片和对应的正常图片;利用深度对比学习方法构建双孪生网络框架,通过双孪生网络框架构建训练集对应的多场景任务下正常产品的特征分布的目标检测模型;基于训练后的多场景任务下正常产品的特征的目标检测模型建立支持集的特征分布,并通过查询集进行工业产品异常检测得到异常检测结果,可有效地解决实际工业多场景变换下存在的各种问题。
-
公开(公告)号:CN118568650A
公开(公告)日:2024-08-30
申请号:CN202411059783.0
申请日:2024-08-05
Applicant: 山东省计算中心(国家超级计算济南中心)
IPC: G06F18/2433 , G06F18/25 , G06V10/764 , G06V10/26 , G06V20/70 , G06V10/44 , G06V10/80 , G06V10/82 , G06F40/30 , G06N3/0464 , G06N3/0455 , G06N3/048
Abstract: 本发明属于计算机视觉和图像识别技术领域,提供了一种基于细粒度文本提示特征工程的工业异常检测方法及系统,包括提取工业图像的文本特征、图像块特征和图像特征;利用图像特征对文本提示进行优化更新,得到细粒度文本提示特征;将图像块特征与细粒度文本提示特征进行相似性对比分析,将对比生成的异常结果图进行相加融合得到最终的异常检测结果;优化模型的参数,使损失函数最小,利用训练好的模型进行测试集的异常检测。本发明针对少样本工业图像异常检测,通过特征提取模块、细粒度文本提示工程模块和跨模态空间域多粒度交互模块搭建异常检测模型框架,提高了模型的泛化能力。
-
-
-