基于成对样本匹配的迁移学习方法

    公开(公告)号:CN110555060A

    公开(公告)日:2019-12-10

    申请号:CN201910849336.8

    申请日:2019-09-09

    Abstract: 本发明属于图像分类和迁移学习技术领域,公开了一种基于成对样本匹配的迁移学习方法,实现了对基于不同域的样本内在关系的挖掘。具体包含以下步骤:(1)数据预处理,(2)基于迁移学习的双链模型构建,(3)实例归一化和批量归一化,(4)计算对比损失和最大均值距离损失。本发明的优点是通过结合实例归一化和批归一化同时进行学习,充分挖掘不同图像的风格和语义关联特性,实现在源域辅助下对少量目标域样本的高效识别。

    基于多尺度小波变换的心电图波形的形态识别方法

    公开(公告)号:CN110547786A

    公开(公告)日:2019-12-10

    申请号:CN201810555348.5

    申请日:2018-06-01

    Abstract: 一种基于多尺度小波变换的心电图波形的形态识别方法,通过本基于多尺度小波变换的心电图波形的形态识别方法,相对于传统的心电图识别,本发明可以更精准的定位峰值位置和范围所在,通过本融合算法可以有效减少由于选择检测尺度不当或是P/T形态多变条件下检测P/T波所造成的损失。特别是对P/T波异常的心电图有更好的检测效果。本发明算法具有容错性高、精确度高等特点,特别是在P/T波检测中,可以有效避免由于P/T波能量集中频率不一致造成的错检和漏检,有效减少因检测不当所造成的误诊等情况。

    无线体域网的保护时隙自适应分配及性能评价方法

    公开(公告)号:CN105792287B

    公开(公告)日:2019-04-09

    申请号:CN201610114754.9

    申请日:2016-03-01

    Abstract: 本发明的无线体域网的保护时隙自适应分配方法,包括:a).设定0,1,…,K表示的K+1个优先级数;b).设定非常高VH、高H、中等M、低L和非常低VL五个流量状态;c).设定保护时隙启动阈值Tth;d).分配优先级数和设置流量状态;e).如有GTS请求或数据发送,则提升流量状态和降低优先级数;否则,降低流量状态和升高优先级数;f).如果有小于启动阈值的优先级数存在,则给具有最小优先级数的节点分配GTS资源。本发明的自适应分配方法,提高了GTS资源的使用效率,提高了网络吞吐量;很好地预测各个节点GTS资源的使用情况,避免了低优先级的节点长时间不能使用GTS资源的缺点,保证了无线体域网紧急数据传输的实时性、可靠性和公平性。

    基于LSTM-FC的脑电信号特征提取与分类识别方法

    公开(公告)号:CN109583346A

    公开(公告)日:2019-04-05

    申请号:CN201811394213.1

    申请日:2018-11-21

    Abstract: 本发明涉及一种基于LSTM-FC的脑电信号特征提取与分类识别方法,其特征在于,包括以下步骤:S1:脑电信号的采集与预处理;S2:定义基本的LSTM网络的模型结构;S3:将通过LSTM网络的特征矩阵经过两层FC网络,得到融合FC网络的LSTM模型,即LSTM-FC模型;S4:将训练集输入相应的模型中进行训练,利用误差反向传播更新网络;S5:训练好相应的模型后,再将测试集输入模型中得到运动想象任务的最终的分类准确率,进而评估此模型的性能;S6:对比LSTM和LSTM-FC两个模型的性能,得出最优的模型。

Patent Agency Ranking