一种承载隔振一体化的板壳超结构及其设计方法

    公开(公告)号:CN111985135B

    公开(公告)日:2024-03-29

    申请号:CN202010844647.8

    申请日:2020-08-20

    Abstract: 本发明公开的一种承载隔振一体化的板壳超结构及其设计方法,属于板壳隔振技术领域。包括板壳和若干微结构组元;微结构组元为等截面块状结构,其截面轮廓线由底边和两条类反正弦函数曲线组成,两条类反正弦函数曲线的交点形成喙尖;微结构组元的底面与板壳连接;若干微结构组元周期性排布组成阵列,分隔振源和被保护对象。当振源激发的弹性波沿板壳从任意方向传播至阵列周围时,微结构组元在弹性波影响下发生弯曲和扭转振动,微结构会对板壳产生力和力矩作用,从而抑制板壳中弹性波的传播,实现了板壳中高频段任意方向入射弹性波的隔离。结构简单,加工方便,能同时对被保护对象和振源进行隔离,兼具良好的承载和隔振能力。

    一种基于保特征偏移计算的可变厚度3D打印模型生成方法

    公开(公告)号:CN116811251A

    公开(公告)日:2023-09-29

    申请号:CN202211734075.3

    申请日:2022-12-22

    Abstract: 本发明公开了一种基于保特征偏移计算的可变厚度3D打印模型生成方法,本发明首先读取OBJ网格格式表示的三角网格和每个面片的偏移量,并通过二次规划求面片理想偏移位置。其次求每个面片偏移的覆盖区域,bfs方法动态建立格子,并进行第一次生成面片的筛选,删除必定不可能为最后需要生成的面片。然后将剩下的面片处在格子外的部分裁去,并进行第二次生成面片的筛选,判断是否为需要生成的面片。最后进行第三次生成面片的筛选,判断该面片的中点是否在初始网格的外部,构建需要生成的面片列表,并建立拓扑结构建立与重新网格化。本发明则具备良好的并行性,运行时间较短,生成的网格无自交,网格密度适中,尖锐特征良好保持。

    一种用于航天器的零膨胀点阵圆柱壳结构及其设计方法

    公开(公告)号:CN106599420A

    公开(公告)日:2017-04-26

    申请号:CN201611097127.5

    申请日:2016-12-02

    Abstract: 一种用于航天器的零膨胀点阵圆柱壳结构及其设计方法,结构由“零膨胀”平面结构(5)卷曲形成圆柱形,“零膨胀”平面结构(5)由多个“零膨胀”胞元(4)在平面上进行空间平移并相互连接得到,“零膨胀”胞元(4)由四个相同的微结构(3)互成90度并在顶点处连接得到,而微结构(3)为由一个底边(1)和两个斜边(2)构成的三角形。设计时,选两种不同的金属材料分别作为底边(1)材料和斜边(2)材料,然后依次设计微结构(3)的几何尺寸、“零膨胀”点阵圆柱壳结构(6)的高度和直径、环向胞元数、高度方向胞元数、底边(1)长度、斜边(2)长度及截面形状,并采用有限元方法进行仿真,通过对底边(1)长度和斜边(2)长度的调整得到最终的设计方案。

    一种承载隔振一体化的板壳超结构及其设计方法

    公开(公告)号:CN111985135A

    公开(公告)日:2020-11-24

    申请号:CN202010844647.8

    申请日:2020-08-20

    Abstract: 本发明公开的一种承载隔振一体化的板壳超结构及其设计方法,属于板壳隔振技术领域。包括板壳和若干微结构组元;微结构组元为等截面块状结构,其截面轮廓线由底边和两条类反正弦函数曲线组成,两条类反正弦函数曲线的交点形成喙尖;微结构组元的底面与板壳连接;若干微结构组元周期性排布组成阵列,分隔振源和被保护对象。当振源激发的弹性波沿板壳从任意方向传播至阵列周围时,微结构组元在弹性波影响下发生弯曲和扭转振动,微结构会对板壳产生力和力矩作用,从而抑制板壳中弹性波的传播,实现了板壳中高频段任意方向入射弹性波的隔离。结构简单,加工方便,能同时对被保护对象和振源进行隔离,兼具良好的承载和隔振能力。

    一种用于航天器的零膨胀点阵圆柱壳结构及其设计方法

    公开(公告)号:CN106599420B

    公开(公告)日:2019-10-18

    申请号:CN201611097127.5

    申请日:2016-12-02

    Abstract: 一种用于航天器的零膨胀点阵圆柱壳结构及其设计方法,结构由“零膨胀”平面结构(5)卷曲形成圆柱形,“零膨胀”平面结构(5)由多个“零膨胀”胞元(4)在平面上进行空间平移并相互连接得到,“零膨胀”胞元(4)由四个相同的微结构(3)互成90度并在顶点处连接得到,而微结构(3)为由一个底边(1)和两个斜边(2)构成的三角形。设计时,选两种不同的金属材料分别作为底边(1)材料和斜边(2)材料,然后依次设计微结构(3)的几何尺寸、“零膨胀”点阵圆柱壳结构(6)的高度和直径、环向胞元数、高度方向胞元数、底边(1)长度、斜边(2)长度及截面形状,并采用有限元方法进行仿真,通过对底边(1)长度和斜边(2)长度的调整得到最终的设计方案。

Patent Agency Ranking