一种基于空时残差神经网络的远场语音识别方法

    公开(公告)号:CN110895933A

    公开(公告)日:2020-03-20

    申请号:CN201811030952.2

    申请日:2018-09-05

    Abstract: 本发明公开了一种基于空时残差神经网络的远场语音识别方法,所述方法包括:步骤1)构建并训练空时残差神经网络ST-RES-LSTM,该神经网络是在的空间和时间两个维度上都引入了残差结构的LSTM神经网络;步骤2)利用训练好的空时残差神经网络ST-RES-LSTM进行声学模型训练,并生成每一帧的分类概率;步骤3)构建语音识别解码网络,并使用步骤2)的训练好的声学模型进行维特比解码出最终识别结果。本发明的方法在LSTM网络的空间和时间两个维度都引入残差结构,既能缓解层数加深带来的梯度消失问题,又能缓解LSTM在时间维度存在的梯度消失问题,从而提高语音识别的性能。

    软件定义网络的网络安全性测试方法

    公开(公告)号:CN105187403A

    公开(公告)日:2015-12-23

    申请号:CN201510498610.3

    申请日:2015-08-13

    CPC classification number: H04L63/1408 H04L63/1433

    Abstract: 本发明提出一种面向软件定义网络的网络安全性测试方法,包括针对目标软件定义网络的安全性测试框架、安全性测试策略、分类安全性测试方法、项目安全性测试方法和安全性测试步骤。其中,测试框架包括将目标软件定义网络划分为数据、控制、应用和管理四个网络平面,分别对各个网络平面的各个网元、链路以及各个网络平面之间的接口展开安全性测试;测试策略包括对安全性测试框架中的各个单元进行测试的选择和流程编制方法;分类安全性测试方法依据各个单元的类别特点开展不同类型的安全性测试;项目安全性测试方法实现具体的针对目标网元、链路或接口的安全性测试,测试流程定义了完整的针对目标软件定义网络的安全性测试过程和步骤。

    情感识别方法及系统
    18.
    发明公开

    公开(公告)号:CN116611433A

    公开(公告)日:2023-08-18

    申请号:CN202310478295.2

    申请日:2023-04-28

    Abstract: 本发明实施例涉及一种情感识别方法及系统,所述方法包括:获取目标文本对应的初始数据,所述初始数据是由所述目标文本经过预处理得到的;设定所述初始数据的细粒度规则,得到所述初始数据对应不同长度的类别文本;根据所述细粒度规则和所述类别文本,确定不同长度的所述类别文本对应的不同类别的情感识别模型;将所述类别文本输入到对应的所述情感识别模型中进行识别处理,得到所述目标文本的情感识别结果。通过对获得到初始数据按照设定的细粒度规则进行设定分类,确定情感识别模型,通过识别处理得到情感识别结果,由此,可以更加准确地表达和识别用户的情感倾向和理解用户情感,更好地支持情感分析应用,更好地支持舆情分析,实现对短文本的情感识别处理的技术效果。

Patent Agency Ranking